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ABSTRACT 
Many engineering systems incorporate prognostics and health management (PHM), which consists of technologies 
and methods to assess the reliability of a product in its actual life-cycle conditions to determine the advent of failure 
and mitigate system risks. Wind turbines are among the systems that incorporate PHM to reduce life-cycle costs and 
increase availability. While cost-benefit models that quantify the value of implementing prognostics within systems 
exist for wind energy systems, they do not specifically quantify the value of decisions after a prognostic indication. 
This paper introduces maintenance options as a means to quantify the value of decisions after a prognostic 
indication. A case study on a US land-based wind farm is discussed. An analysis of wind turbine maintenance data is 
presented, and the maintenance options methodology is then demonstrated to establish the value of the wait-to-
maintain option. The value of waiting after a prognostic indication is determined using a model that quantifies the 
benefit that results from a PHM implementation that allows the decision-maker to delay maintenance actions, 
thereby using the remaining life of the system components rather than throwing it away. 
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1. INTRODUCTION 
Wind energy is at the forefront of alternative energy sources. The US Department of Energy (DoE) and the 

National Renewable Energy Laboratory (NREL), under the “20% Wind Energy by 2030” plan, announced that the 
US could feasibly increase wind energy’s contribution to account for 20% of the total electricity consumption in the 
United States by 2030 [1]. However, wind energy sources face numerous challenges that could hinder their 
competitiveness with traditional power sources. Managing availability—a function of reliability and 
maintainability—is a significant issue that needs to be addressed since it directly impacts the economic feasibility of 
wind farms.  

Availability is the ability of a service or system to be functional when it is required for use or operation. The 
availability of wind turbines will significantly affect their economic viability. A key aspect of wind turbine 
availability is the need for nontraditional resources for maintenance. Wind farm maintenance often requires cranes 
for critical repair and replacement of major components (blades, gearboxes, and bearings, for example). The 
availability of the cranes themselves may be limited, or maintenance may have to wait until the turbine fails in order 
to justify the cost of bringing a crane to the site. If a turbine fails immediately after a maintenance action has been 
performed on it, then it may not be available until the next time a crane is on-site for maintenance (or the vessel is 
on-site if the wind farm is offshore). Kühn [2] studied the failure rates of 235 small wind turbines and assessed the 
annual frequency of failures in the turbines and the corresponding downtime for different subassemblies; some 
failures resulted in a downtime of as much as 25 days. It is important to note that the downtime for wind turbines is 
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a composite of different downtimes, such as time for inspection, management decision time, time to acquire 
replacement parts, time to get equipment to the site, repair time (including weather delays), etc.  

The Wind Energy Operations & Maintenance Report, published in 2010 [3], included a discussion highlighting 
the maintenance challenges with wind energy systems. Some of the most notable conclusions are that the operation 
and maintenance (O&M) costs for wind power are double or triple the figures originally projected, and they are 
particularly high in the United States.1 Furthermore, gearboxes, which have been designed for a 20-year life, are 
failing after 6 to 8 years of operation. Similar figures were presented in a report published in 2011 [5]. These issues 
indicate that reliability, maintainability, and availability are key challenges to the economic viability of wind 
turbines and their ability to compete with traditional energy sources. 

Figure 1, adapted from Arabian-Hoseynabadi et al. [6], shows the failure rates of different sub-assemblies in wind 
turbines. The plot shows that multiple subassemblies have a significant annual failure rate. 

 

 
Figure 1. Reliability failure rates for wind turbine subassemblies [6]. 

 
To avoid unanticipated failures and ensure high availability, many industries, such as the aerospace industry, have 

begun to employ prognostics and health management (PHM) techniques that warn users (and/or maintainers) before 
systems fail. PHM is a discipline comprised of technologies and methods designed to assess the reliability of a 
product in its actual life-cycle conditions to determine the advent of failure and mitigate system risks [7][8]. The 
PHM system provides information on remaining useful life (RUL), which allows the decision-maker to take 
appropriate actions to manage the system’s health prior to (or sometimes upon) failure. There are numerous 
applications of PHM in industries such as aircraft, wind turbines, gas turbines, and electronic systems [7].  

PHM has been used on wind turbines to assess the state of health for gearboxes, bearings, oil, blades, electronics, 
and overall performance. A common approach is to monitor gearbox vibration using accelerometers and use 
vibration analysis approaches to detect faults [9]. Oil analysis is performed to safeguard the oil quality and 
components involved, which is generally performed offline by taking samples. The oil is analyzed for wear debris. 
In wear debris analysis, the quantity, size distribution, morphology, and color of the wear debris is determined, 
which can provide information on the wear modes, wear sources, and wear phases present in the machine [10]. The 
analysis of the blades is typically done by examining the physical conditions of the materials and is performed 
offline to monitor crack growth. Power electronics and electronic controls account for a small portion of the cost but 
have a potentially large effect on downtime if they fail frequently. There have been several diagnostic approaches 
developed for power electronic devices, especially IGBTs, but these detect faulty components rather than predict 
when failures will occur. Methods for PHM for wind turbine electronics include neural networks, wavelet analysis, 
and bond graph methods. Adams et al. [11] proposed a structural health monitoring method for wind turbines using 
vibration signals from the turbines. A review of condition monitoring of wind turbines can be seen in Hameed et al. 
[12].  

As an example of the current state of wind turbine maintenance, consider a US land-based wind farm consisting of 
more than 100 turbines. The farm was completed in the early 2000s. The service data pertains to maintenance 
actions and consists of a database of all maintenance actions reported for the turbines since they were installed. The 
service data was obtained for all years since the turbines were installed (approximately 10 years).   

Scheduled maintenance (fixed time or usage interval based) is the most common maintenance paradigm used for 
maintaining wind farms. However, this paradigm does not account for the actual usage and loading conditions, and, 
                                                           
1 It is not uncommon for the O&M costs for “sustainment-dominated” systems [4] to be 60–70% of the total cost of ownership of the system. 
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if not optimized, can result in a significant amount of unscheduled maintenance actions. In order to highlight the 
problems with scheduled maintenance, this example presents maintenance data (also called service data) for a wind 
farm that is operating under a scheduled maintenance paradigm. 

Figure 2 shows the cumulative maintenance cost for the wind farm under consideration for the years 2007 to 
2010.2 Each line in Figure 2 corresponds to one turbine in the farm. The plot shows abrupt jumps in cumulative cost 
that correspond to turbine failures (such as gearboxes) that should have been avoided by scheduled maintenance (but 
were not). Gearboxes are examples of components that were not supposed to fail during the first 10 years of 
operation, but did in fact fail. 

 

 
Figure 2. Cumulative maintenance cost for 3 years for the farm (more than 100 turbines). 

 
For the wind farm considered here, there were four service types: 1) non-functional turbine, 2) operating with 

problem, 3) preventive maintenance, and 4) scheduled preventive maintenance. The service type indicates the state 
of the turbine when maintenance was requested. A “non-functional turbine” indicates that service was requested for 
a turbine that was not operational. Preventive maintenance is a request for all maintenance actions as a result of a 
trigger; in addition, scheduled preventive maintenance occurs twice a year. In the farm under consideration, the 
frequency of “non-functional turbine” request types is larger than all other types. “Operating with problem” ranks 
second in the service request type. If the turbine is non-operational or operating with a problem, the turbine may not 
produce as much power as it should, and its life-cycle cost will increase as a result.  

For the service request “non-functional turbine,” the number of days elapsed between the service request and the 
repair date of the turbine is shown in Figure 3. The histogram shows high frequency for days 0 to 20. This may be 
due to the fact that many faults are resolved by resetting the turbine or some other subsystem in the turbine; or the 
fault can be indicated during scheduled maintenance. However, there were a substantial number of service requests 
that took more than 20 days to resolve. The availability of maintenance resources directly impacts the number of 
days the turbine is not functional because it is down for maintenance. 

                                                           
2 The cost values on the vertical axis in Figure 2 have been removed to preserve the confidentiality of the data. 
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Figure 3. Time between service request and repair for non‐functional turbine service requests. 

  
For some turbines in Figure 3 more than 100 days elapsed between the service request and the time when the 

turbine was repaired. If the downtime lasts for 100 days, then the turbine will not generate power for almost a third 
of the year.  

Figure 4 shows the days that elapsed between the repair of the problem and the closest scheduled maintenance 
cycle for the fault type: “non-functional turbine.” The first bin in the histogram in Figure 4 exhibits the largest count 
since it can be associated with the proximity to the scheduled maintenance cycles. The count includes times before 
or after the scheduled maintenance. In other words, some events may have happened and were missed in the 
scheduled maintenance. However, there is a high frequency of events happening more than 40 days outside (before 
or after) the maintenance cycle. Some events happen more than 100 days outside the maintenance cycle, and as a 
result the turbine may have had to wait for more than 100 days until the next maintenance cycle for repair. 

 
Figure 4. Time elapsed from repair to closest maintenance cycle for non‐functional turbine service requests. 

 
This discussion highlights fundamental points that may result in a decrease in the economic value of wind farms. 

Turbines in a farm have a large amount of downtime, and a large number of maintenance events occur outside 
scheduled maintenance events. The scheduled maintenance policy for a wind farm presents a number of scenarios 
that potentially decrease the value obtained from the wind farm. Prognostics can potentially increase the 
maintenance value of such systems, prevent failures, and increase the impact of renewable energy sources. 
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1.1 Maintenance Approaches for Wind Farms 
 
There are different approaches to maintenance, but, fundamentally, depending on if a system has failed, when we 

think it will fail, and how it has failed, there are decisions that need to be made about how and when to maintain it. 
The goal is to optimize the maintenance of turbines by minimizing the costs of maintenance and maximizing the 
reliability and the availability. Corrective (unscheduled) maintenance involves maintaining a system upon failure. 
Corrective maintenance allows the entire life of the system or component to be used. For many systems, corrective 
maintenance is inefficient, as it can result in long downtimes, catastrophic failures with significant collateral damage 
(damage to components that were not part of the initial cause of the shutdown), and unpredictability, which can lead 
to low maintenance value. Scheduled maintenance can be time-based or usage-based. It has a low maintenance value 
if the time or amount of usage to failure is not well characterized, leading to the loss of substantial remaining useful 
life (RUL). Condition-based maintenance (CBM) enabled by PHM allows the reliability of a system to be monitored 
in real time. PHM-enabled CBM is considered to be the paradigm with the highest potential value, since it 
minimizes the unused RUL, avoids failures, and provides a lead time for logistics management, among other 
benefits. However, PHM-enabled CBM may have greater implementation and support costs than unscheduled 
maintenance.3  

When a system that incorporates PHM detects an anomaly, it creates a prognostic indication that consists of an 
estimation of the RUL before the system fails; this creates flexibility for managing the system. RUL is the remaining 
useful life that a system has, and it effectively represents the lead time (subject to appropriate uncertainties) for the 
decision-maker or other maintenance entity to take preventive actions prior to failure. This can be described as the 
flexibility phenomenon, whereby entities involved with the operation, management, and maintenance of a system 
have the flexibility to take actions with a risk/value tradeoff.    

In a system that incorporates PHM, after a prognostic indication, several different actions can be taken by the 
decision-maker to manage the health of the system. Examples of the actions that can be taken include fault 
accommodation (e.g., turning the turbine off), changing loads (e.g., operating at a lesser load), and tactical control 
(e.g., changing the control of the turbine). Hence, the decision-maker has a set of options among which they can 
choose. Bonissone [13] proposed a temporal segmentation for decisions for systems with PHM, where the tactical 
and operational decisions at the object level are examples of options after prognostic indication. The term options 
will be used in this paper to denote a choice or action that the decision-maker can take after a prognostic indication. 
The flexibility that PHM allows increases the value of the system if the decision-maker can take advantage of the 
options it provides. This paper develops a methodology that uses real options for the valuation of options enabled by 
PHM.  

A real option is an alternative or choice that becomes available as a result of a business investment opportunity. It 
is a right, but not an obligation, to take an action (e.g., defer, expand, contract, or abandon a project) at a 
predetermined cost called the exercise price, for a predetermined period of time—the life of the option [14][15].  
Real options analyses are decision tools for addressing the value of investments under uncertainty. 

Real options are the extension of financial options to real assets. Unlike financial options, real options are not 
securities and they cannot be traded. A real option has an underlying asset, such as a project or a growth opportunity. 
For real options there is no need for a contract to specify the payoff, and the payoff can be a future cost avoidance 
[16]. In our case, the investment opportunity that creates maintenance options is the investment in putting PHM into 
the system. 

Real options have been used for maintenance applications (e.g., [17]). Real options have also been applied in the 
maintenance, repair, and overhaul industry [18], and for scheduling joint production and preventive maintenance for 
the manufacturing industry when demand was uncertain [19].  

While there have been numerous efforts to implement PHM in wind turbines, an understanding of the economic 
merit of implementing PHM and the value it actually provides at the system level is lacking. This paper develops a 
method to quantify the value of decisions after a prognostic indication. This will provide the value that the decision-
maker obtains from PHM at the system-level, as well as a basis for optimizing maintenance decisions. 

In this study, we use an options framework to quantify the value of the waiting-to-maintain option. This represents 
a cost-benefit-risk model that provides a basis to know whether waiting to maintain is beneficial. The waiting option 
lends itself naturally to the fundamental tradeoff in maintenance problems with prognostics. To understand options, 
this fundamental tradeoff can be stated as follows: the waiting option attempts to find the time to perform 

                                                           
3 There are particular systems under particular circumstances for which scheduled or unscheduled (corrective) maintenance is in fact the optimum 
maintenance approach. It may not always be practical to implement CBM and PHM in systems (or within every component of a system). 
Furthermore, complex systems may use a combination of the different maintenance paradigms in order to optimize maintenance decisions. 
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maintenance that maximizes the combination of the revenue that can be generated by the system during its RUL and 
the cost of unscheduled failure that can be avoided. 

The remainder of the paper is structured as follows: Section 2 presents maintenance options and their valuation 
approach. A case study on maintenance options for wind turbines is presented in Section 3. Finally, Section 4 
concludes the work and discusses research opportunities.  

2. A METHODOLOGY TO DETERMINE THE VALUE OF THE WAIT‐TO‐MAINTAIN OPTION 

This section presents a methodology to quantify the wait-to-maintain option. Section 2.1 presents the valuation 
model. Section 2.2 presents the use of the methodology in a simple example, and Section 2.3 presents a 
generalization of the valuation of the waiting option for different time horizons. The algorithm will then be used in 
Section 3 in a case study on wind turbines. 
 

2.1. Valuation Methodology  

 
Determining the value of waiting to perform maintenance is at the heart of decision support after a prognostic 

indication. Decision-makers are concerned with the value of delaying an investment in maintenance given the 
flexibility enabled by PHM. This is essentially knowledge of the time when waiting is no longer beneficial.  

We start by defining the value ( ெܸ) as the value of the summation of cost avoidance (CA) and cumulative revenue 
generated from operating the system (R) up to the end of the RUL4, which can be expressed as: 

 

ெܸ ൌ ܣܥ ൅ ܴ (1) 

The cost avoidance opportunities are expressed as the difference between the cost of resolving non-detected 
failures (ܥ௎ௌெ) (the subscript USM stands for unscheduled maintenance) and the cost of the resolution of detected 
problems prior to failure (i.e., the cost of carrying out maintenance based on prognostic information, ܥ௉ுெ). In other 
words, it is the difference between the cost of managing (repairing or replacing) a failed system and the cost of 
repairing it based on its condition. 

 
ܣܥ ൌ ௎ௌெܥ െ ௉ுெܥ (2) 

Consider the following simple example: a system indicates an RUL of 3 time units, and ெܸ	 has an initial value of 
1. A Monte Carlo simulation that follows 8 possible time histories for this example is shown in Figure 5. A 
prognostic indication is obtained at time 0. Each of the time steps after the prognostic indication  represents a point 
in time when there is an opportunity for maintenance (this is a discrete time when maintenance can be performed; 
note, maintenance may not be possible at all future times since resources may not always be available). In our 
analysis, we assume that maintenance can be carried out at discrete time steps 1, 2, and 3. At every time step, we 
need to examine the value of continuing on to the next time step (i.e., waiting until a future time step) and compare it 
to the value of maintaining at the current time step. In terms of maintenance, waiting for another time step means 
using the system through more of its remaining useful life, thus generating more revenue, but at an increasing risk of 
failure. In the simplest case, where there is one time step and the value can go up or down with some probability, 
Figure 5 can be regarded as a simple decision tree. However, Figure 5 illustrates multiple time steps where the value 
can increase and/or decrease until the last time step. The actual decision process is illustrated in detail in Section 2.2. 

                                                           
4 The methodology presented in this paper assumes that an RUL has been generated using a PHM system. The methodology of obtaining the 
RUL from the data at hand is outside the scope of this paper. There are numerous approaches for predicting a RUL for systems, e.g., [7] and [12]. 
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Figure 5. Simulated value (cost avoidance and revenue opportunities). Each line is a possible stochastic value path 
post‐prognostic indication for the system. 

 
Waiting is highly influenced by uncertainty. For example, for the paths in Figure 5, waiting for one time step 

shows paths with VM higher and lower than 1. This is a result of propagating uncertainty in time. For example, 
consider a wind turbine that has a predicted RUL; the operator may choose to run the turbine. A factor influencing 
this decision is uncertainty about wind speed. The probabilities of high and low wind speeds coupled with the fact 
that using a wind turbine when the wind is blowing at different speeds may generate different revenues. In Figure 5, 
for the paths where the value is higher than 1, waiting is beneficial; this is the upside effect of uncertainty. For the 
paths that are lower than 1, the uncertainties will result in a recommendation of immediate maintenance (or when the 
first opportunity arises). If a cross-section of the data in Figure 5 is taken at a specific time step, the result will be a 
distribution of possible values (VM ) at that particular time step. 

Time-dependent uncertain quantities can be modeled with dynamic forecasting models [20]. An example of a 
stochastic differential equation to propagate uncertainty with time is: 

 
݀ܺ௧ ൌ ݐ௧݀ܺߤ ൅ ௧݀ܺߪ ௧ܹ (3) 

where ܺ௧ is the value of the quantity being simulated at time t (i.e., a stochastic process), ߤ is a drift component, ߪ is 
a variance component (or shock, also called volatility), and ௧ܹ is a Brownian motion (also known as a Weiner or 
continuous-time stochastic process). For example, Figure 6 shows the three uncertain quantities in equation (1) 
modeled using equation (3). The vertical axis represents the three uncertain quantities in equation (1): cost 
avoidance (CA), cumulative revenue (R), and value ( ெܸ). The horizontal axis represents time in days; at time 0 a 
prognostic indication is obtained, and uncertainty is propagated for 100 days in each case. The diagram on the left is 
the cost avoidance (starting value of $45,941 (60% of the cost of failure of a gearbox), 0.25 = ߪ ,0.8- = ߤ). The 
diagram in the middle is the cumulative revenue of the turbine (starting value of $237, which is the daily value 
generated by a 600KW turbine with a capacity factor of 0.33 and a cost of energy $0.05/KWh; 0.1 = ߪ ,0.5 = ߤ; note 
that this is a cumulative quantity). The diagram on the right represents the summation of the first two quantities. The 
drift and volatility values are assumed for the purpose of the example; however, their actual values and the 
methodology to obtain them will be discussed in the case study in Section 3. The values for drift and volatility are 
estimated from the variation in the power curve for the revenue and from historical data for cost avoidance.  

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Time

V
M



  

8  to be published in Wind Energy 
 

 
Figure 6. Uncertain quantities propagated in time. 

 
We note that the time-dependent uncertainties are considered to account for a representation of the uncertainty in 

the remaining useful life. The propagation of uncertain quantities over time presents a distribution at each time step. 
For example, if a cross-section of the value	 ெܸ is taken at the last time step (100 days) in Figure 6, the spread in the 
distribution of the quantity represents all the possible outcomes if the decision-maker is to wait for the whole 100 
days. The problem is, however, not static. A new prediction can be obtained one day after the first prediction and 
some uncertainty may be resolved and the uncertain quantities are propagated again. The following discussion 
presents the value of having the option to wait for up to the predicted RUL (see Section 2.3 for the generalization of 
waiting to other points in time). This will give a value of waiting for all possible outcomes in uncertain quantities. 
The valuation can be repeated whenever new information about prediction or uncertainties is obtained. 

At every time step, the value ெܸ is compared with the cost of maintenance,	ܥெ, which accounts for the cost of 
failure,	ܥி௔௜௟௨௥௘, cost of downtime ܥ஽௢௪௡௧௜௠௘, and penalty ܥ௉௘௡௔௟௧௬: 

 
ெܥ 	ൌ ி௔௜௟௨௥௘ܥ	 ൅ ஽௢௪௡௧௜௠௘ܥ ൅  ௉௘௡௔௟௧௬ (4)ܥ

Comparing ெܸ and ܥெ is at the heart of the option valuation. If ெܸ (the summation of the revenue generated from 
running the turbine and the cost avoidance opportunities) is larger than ܥெ, then the decision-maker can harness the 
upside effect of uncertainties and wait to perform maintenance.  

In order to valuate the wait-to-maintain option, we start by defining the following quantities: ௜ܺ is the value of ெܸ 
from operating the system at the current time;	 ௜ܺାଵ is the value of running the system until the next time step when 
maintenance can be performed; ܸሺ ௜ܺାଵሻ is the value of waiting for an additional time step to maintain the system. In 
other words, this is the value of the cost avoidance opportunities and the revenue generated from the system, and is 
derived from waiting to perform (invest in) maintenance.  

In order to find the optimal time for maintenance, we define a stopping rule to exercise the option. The stopping 
rule defines the optimal time for maintenance. For example, if the value of continuation is smaller than the value of 
exercising the option at the current time, it is optimal to stop and maintain since waiting does not add additional 
value. The stopping rule is based on finding the expectation of the option’s value at time ݐ௜ାଵ conditional on the 
value of revenue at time ݐ௜, given by ܧሾܸሺ ௜ܺାଵሻ| ௜ܺሿ. The value of continuation and the stopping rule are impacted by 
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 .ெ, which is the baseline against which all the values are comparedܥ
The expectation function is a representation of the expected value obtained from waiting (delaying maintenance 

actions/investments) conditioned on the value obtained from the system and cost avoidance at the current time step. 
For example, if the expected value—in terms of cost avoidance and additional revenue derived from waiting 
(delaying a maintenance action)—is positive, then the decision-maker is better off postponing the maintenance 
actions and using the system through to the remaining useful life. If, on the other hand, the cost of failure is higher 
than the revenue generated, it will have a value of zero5 in the expectation function, indicating that waiting is not 
beneficial. This can be related to the fundamental maintenance problem: how to maximize the use of RUL while 
minimizing the risk of failure.  

Longstaff and Schwartz [21] proposed an algorithm for pricing American options (these are options that can be 
exercised at any time, which is the case for the wait-to-maintain option) with path dependency by approximating the 
conditional expectation function with a set of basis functions. This algorithm is called the least squares Monte Carlo 
algorithm (referred to as LSM). This algorithm is expressed as  

 

ሾܸሺܧ ௜ܺାଵሻ| ௜ܺሿ ≅ ෍ ௜,௡߶௡ሺߚ ௜ܺሻ

ே

௡ ୀ ଴

 (5) 

where β is the coefficient of a basis function, ϕ is a basis function, and N is the number of basis functions used. 
Equation (5) is essentially an approximation of the values in the uncertain paths with a set of polynomials 

(Laguerre polynomials are used in [21]). In this paper we have used the LSM algorithm to valuate maintenance 
options.  

In summary, the process for valuating the waiting option is as follows: 
1)  Estimate the time-dependent uncertainties in the model. For the waiting option defined in this paper, the 

uncertain quantities that need to be propagated with time are ܣܥ	and ܴ. The parameters for the uncertain 
quantities can be estimated from the historical data. 

2)   Propagate the uncertain quantities over a time frame corresponding to the RUL. Time-dependent uncertain 
quantities can be modeled with dynamic forecasting models [20]. An example of such models, Geometric 
Brownian motion, is given in equation (3). Equation (3) represents a time-varying uncertain quantity. When 
simulated with a number of time histories, it represents the uncertain quantity over time.  

3)   Define the value of ܥெ; this serves as a basis of comparison for the value of waiting. 
4)   Start from the last time step (tn) and move backwards. At time step tn-1, for each path, consider the value that 

is “in the money”6; as a path where the value of VM is higher than CM. Approximate the expectation function 
in equation (5) with a set of basis functions using Least Squares. 

5)   Compare the value obtained from the expectation function of waiting from tn-1 to tn and the actual value at tn-1. 
If the value of waiting is higher, the decision-maker is better off waiting for the path considered. If the value 
of waiting is lower, the decision would be to maintain at tn-1. 

6)   Repeat steps 4 and 5 until time step 0. 
7)   Obtain the value of waiting at the optimal decision points for each path, discount the value to time 0, and 

average to obtain the value of waiting until time tn. 
The value obtained from these steps represents the additional value that the decision-maker can obtain from 

having the option to run the system up to the end of the RUL. It is a cost-benefit-risk model that provides a basis for 
quantitatively determining if waiting is beneficial or if the risk of failure is high enough that the revenue generated 
from the system cannot be compensated for by running the system. In other words, the value of waiting is a 
representation of the benefit obtained from using the RUL versus throwing it away. If the decision-maker decides to 
maintain immediately after the prognostic indication, then the RUL is thrown away and there is no value in waiting. 
The steps in the valuation of the waiting option are described using an example in Section 2.2, and the generalization 
for calculating the value of the wait-to-maintain option for any time before and up to the end of the RUL is 
presented in Section 2.3 

 

                                                           
5 The value cannot be negative because we are representing the opportunity of the upside effect generated from waiting. 
6 An option is referred to as “in the money” if its value at a particular time step is higher than ܥெ. 
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2.2. Waiting Option Valuation Example 

 
To illustrate the valuation of the wait-to-maintain option, we present a simple example. The example considered in 
this section corresponds to the data presented in Figure 5. We consider a system with prognostic capabilities that 
indicates an RUL of 3 time units. The goal is to obtain the value of having the option to wait for up to 3 time units 
(the end of the RUL); in this case (where CM is the same for all time steps), we implicitly assume the system will not 
fail before the end of the RUL (Section 2.3 describes lifting this restriction). In this example, the value of waiting is 
an additional benefit that can be obtained from the knowledge of an RUL of 3 time units. The numerical data is 
given in Table 1. 
 
 

Table 1. Value of ࡹࢂ for 10 possible time histories (paths) 

Path t =	0 t =	1 t =	2 t =	3

1 1 1.05 1.85 1.73 
2 1 1.97 3.15 1.78 
3 1 0.61 0.52 0.50 
4 1 1.02 1.33 1.09 
5 1 0.82 0.78 0.79 
6 1 1.10 1.54 1.88 
7 1 0.60 0.75 0.97 
8 1 1.23 1.85 2.07 
9 1 0.83 0.81 0.39 
10 1 1.17 1.23 1.05 

 
 

Ten time histories (paths) for the value of maintenance are simulated in this example. Some paths have values 
higher than the initial starting point of 1, while some are lower; this is a consequence of uncertainty in the problem. 
Cost avoidance opportunities will decrease with time as there is a higher risk of failure of the system, but the system 
will generate more revenue as it is used through to the end of the RUL. For this example, we make the following 
assumptions: ܺ଴ 	ൌ 	1	is	the	value	of	 ெܸ	at	time	0; ܥெ 	ൌ 	1.1; and ݐ	 ൌ 	1, 	ݐ ൌ 	2, 	ݐ ൌ 	3 are the times at which the 
decision-maker can perform maintenance. 

At the final exercise date, the optimal strategy is to exercise the option if it is “in the money” (i.e., if its value is 
greater than CM). Prior to the final date, the optimal strategy is to compare the immediate exercise value with the 
expected cash flows from continuing, and then exercise the option if immediate exercise is more valuable. Hence, 
the key here is to identify the conditional expected value of continuation. The objective is to determine the stopping 
rule that maximizes the value of the wait-to-maintain option at each point along each path. 

Conditional on not exercising the option before the final expiration date at t = 3, the cash flows realized by the 
option holder from following the optimal strategy are given in Table 2. The values for t = 3 in Table 2 are obtained 
by subtracting 1.1 (the value of CM) from the value at t = 3 if the option is in the money. 

 
Table 2. Cash flow at t = 3 if the option is not exercised 

Path t =	0 t =	1 t =	2 t =	3
1	 - - - 0.63 
2	 - - - 0.68 
3	 - - - 0 
4	 - - - 0 
5	 - - - 0 
6	 - - - 0.78 
7	 - - - 0 
8	 - - - 0.97 
9	 - - - 0 
10 - - - 0 
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If the option is in the money at t = 2, the option holder must then decide whether to exercise the option 

immediately or continue until the next time that maintenance can be performed. As seen in Table 1, there are 6 paths 
where the option is in the money at t = 2 (where the value is more than 1.1). Note that only the paths that are in the 
money are considered for the analysis. We denote the value of ெܸ at t = 2 for those paths as X, and we denote the 
corresponding discounted cash flow received at t = 3 if the option is not exercised at t = 2 as Y. For instance, if the 
option is not exercised at t = 2 for path 1, then Y is calculated using ܻ	 ൌ 	 ሺ1.73 െ 1.1ሻ0.9418	 ൌ 	0.59  where e-rp = 
0.9418 is used to discount for p = 1 time period with an assumed discount rate of r = 0.06. 

 
Table 3. X and Y at t = 2 

Path X Y
1 1.85 0.59
2 3.15 0.64
3 - - 
4 1.33 0 
5 - - 
6 1.54 0.73
7 - - 
8 1.85 0.91
9 - - 
10 1.23 0 

 
 

To estimate the expected cash flow from waiting (continuing the option’s life) conditional on the value at t = 2, 
we regress Y on the basis functions. For the purpose of the example, we choose a polynomial function consisting of 
an intercept, X, and X2 (this choice is made for ease of representation). In the algorithm, we use Laguerre 
polynomials; however, other polynomials can be used as well. This will result in an expectation function that 
approximates the value of continuation: 

 
ሾܻ|ܺሿܧ 	ൌ 	െ0.7679 ܺଶ ൅ 3.7020ܺ െ 3.4082 (6) 

With the conditional expectation function we can now compare the value of immediate exercise at t = 2 with the 
value from continuation, as shown in Table 4. 

 
Table 4. Value of exercise (ࢄ െ  ሿ at t = 2ࢄ|ࢅሾࡱ ሻ and continuationࡹ࡯

Path Exercise Continuation
1 0.75 0.81
2 2.05 0.63
3 - -
4 0.23 0.16
5 - -
6 0.44 0.47
7 - -
8 0.75 0.81
9 - -
10 0.13 0.00

 
The exercise value is obtained by subtracting CM from the value of VM at the current time step (step 5 in the 

algorithm in the previous section). In this example, we can represent it as (X – 1.1). The continuation value is 
obtained by substituting X into the conditional expectation function. This comparison implies that it is optimal to 
continue for all the paths considered since the value of continuation is higher than the exercise value at t = 2 (i.e., the 
conditional expectation function evaluated is higher than the current exercise value). The same steps are repeated 
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iteratively until time t = 0 in order to obtain the stopping rule matrix (Table 5), which is a matrix consisting of 
binary numbers where 1 represents the optimal decision for a specific path. This optimal decision is defined as the 
stopping rule. For example, for Path 1 in Table 5, the optimal decision to exercise the option is at time t = 3, while 
for Path 8 the optimal decision is at time t = 1. Paths 5, 7, and 9 are all zeros in Table 5; these paths were not 
considered initially, as the value ெܸis smaller than 1.1 for all time steps. This means that there is no value in waiting 
for Paths 5, 7, and 9.  

 
Table 5. Stopping rule matrix 

Path t =	1 t =	2 t =	3
1 0 0 1 
2 0 1 0 
3 0 0 0 
4 0 1 0 
5 0 0 0 
6 0 0 1 
7 0 0 0 
8 1 0 0 
9 0 0 0 
10 1 0 0 

 
In order to obtain the cash flow realized, we consider the stopping rule matrix (Table 5) and consider the instances 

where there is a 1 in the matrix. This will lead to the cash flow matrix shown in Table 6. 
 

Table 6. Wait‐to‐maintain option cash flow matrix 

Path t =	1 t =	2 t =	3

1 0 0 0.63 
2 0 2.05 0 
3 0 0 0 
4 0 0.23 0 
5 0 0 0 
6 0 0 0.78 
7 0 0 0 
8 0.13 0 0 
9 0 0 0 
10 0.07 0 0 

 
To calculate the value of the option, we discount each cash flow in the option to time 0 and average all the paths 

to obtain: 
	݁ݑ݈ܸܽ ൌ 	 ሾ0.63ሺ0.8353ሻ ൅ 2.05ሺ0.8869ሻ ൅ 0.23ሺ0.8869ሻ ൅ 0.78ሺ0.8353ሻ ൅ 0.13ሺ0.9418ሻ

൅ 0.07ሺ0.9418ሻሿ/10	 ൌ 	0.3388 
 
where 0.8353 is used to discount 3 periods, 0.8869 to discount 2 time periods, and 0.9418 to discount 1 period. 

In this example, if the decision-maker waits to maintain, an expected additional 0.3388 monetary units (MU) is 
obtained. If the decision-maker decides not to wait but instead to maintain immediately after obtaining the 
prognostic indication, a value of 0.3388 may be missed. This example demonstrates the use of the LSM algorithm 
for obtaining the value of the waiting option. Without accounting for the option to wait for three time steps to 
maintain, one would compare the value at t = 3 with 1.1 and then discount to time 0. This example would result in a 
value of 0.104 = ([(1.73–1.1)+(1.78–1.1)+(0.5–1.1)+(1.09–1.1)+(0.79–1.1)+(1.88–1.1)+(0.97–1.1)+(2.07–
1.1)+(0.39–1.1)+(1.05–1.1)]/[(10)(0.8353)]). Hence, when accounting for flexibility in the decision-making process 
(waiting when it is favorable), the results show that the value of waiting is 224% ((0.3388–0.104)/0.104) higher than 
the value obtained without accounting for flexibility. The result from this example represents the additional value 
obtained from PHM. Waiting, an option that is enabled by PHM, is a representation of the benefit obtained from 
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having the option to use the system through the end of the RUL. 
 

2.3. Determining the Optimum Time to Wait—Generalization of the Waiting Option  

 
The algorithm described in Section 2.1 and demonstrated in Section 2.2 explains how to obtain the value of 

having the option to wait to the end of the RUL. However, in general, the system may not survive to the end of the 
predicted RUL and decision-maker must be able to determine the value of waiting when the system may fail (jump 
to ruin) before the end of the predicted RUL, i.e., obtaining the optimal time to wait to maintain a system based on 
maximizing the value obtained from running the system while minimizing the negative effect of the risk of system 
failure. In order to obtain the value at each time, the following steps are performed: 

1) Perform steps 1 to 7 of the algorithm in Section 2.1 to obtain the value of waiting until the end of the 
remaining useful life. 

2) After obtaining the value of waiting until the end of the remaining useful life, the decision-maker is then 
interested in knowing the value of waiting for different times between the prognostic indication and the end 
of the remaining useful life. In steps 1 and 2 in the algorithm in Section 2.1, the uncertainties are estimated 
and the uncertain quantities are propagated in time. The summation of the cost avoidance and the revenue 
results in a matrix of the values of VM. The rows of the matrix correspond to the paths being simulated, and 
the columns correspond to the values of VM at different time steps. In order to obtain the value of waiting 
for a time less than the end of the remaining useful life, we use the same matrix for VM but consider a 
smaller number of columns. For example, if the value of waiting for 2 time steps is to be calculated for the 
example in Section 2.2, we consider the matrix in Table 1 until t = 2.  

3) After obtaining the matrix for VM corresponding to the time frame under consideration, the time steps are 
discretized in order to perform subsequent calculations. The time steps correspond to times at which 
maintenance can be performed. This will give the basis for deciding whether waiting is beneficial or not; it 
is an integral part of analyzing the flexibility enabled by PHM.  

4) Consider the new matrix for VM and the corresponding time steps, and repeat steps 4 and 5 from the 
algorithm in Section 2.1 until reaching time t = 0.  

5) At this point, the value of the waiting option can be calculated for the new time frame considered using step 
7 from the algorithm in Section 2.1.  

6) Consider a new time frame and truncate the matrix of VM at a time corresponding to this new time frame 
and repeat steps 3 to 5 above to obtain the value of waiting. 

7) Repeat steps 1 to 7 to obtain the value of waiting for different times ranging from the time of prognostic 
indication to the time corresponding to the end of the remaining useful life. 

3. CASE STUDY: WAITING OPTIONS FOR MAINTAINING WIND TURBINES 

 
In this section, we demonstrate the wait-to-maintain option on a US land-based wind turbine. The data considered 

in this section corresponds to the same farm described in Section 1. In this section, we consider a subset of 7 wind 
turbines from the farm and use the power data provided by the manufacturer of the turbines from a one-year period. 
The case study first considers the value of waiting for one subsystem indicating remaining useful life, and then two 
systems with prediction of remaining useful life, using the waiting option to define a dynamic maintenance 
threshold.  

Figure 7 is an actual power curve of a wind turbine (a single turbine over one year of operation) that shows the 
power produced as a function of wind speed.7 Each data point is the average over 10 minutes. The data was then 
scaled to 600KW (the turbine size considered in the case study). The scaling does not affect the power–wind 
relationship. 

                                                           
7 In an ideal scenario, the power should increase after the wind speed reaches 3.5 m/s, keep increasing until reaching the cut-off speed of 13 m/s, 
and then stay constant, thus exhibiting an S-curve. The noise in the actual curve is due to multiple causes: noise in the data from sensors, 
malfunctions of the turbine, lag between the control signal and the actual blades turning (which will result in a delay in reaching the maximum 
power for a particular wind speed), and downtime.  
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Figure 7. Actual wind turbine power curve over one year of operation. 

 

3.1. The Value of Waiting 

 
Uncertainties are at the heart of the maintenance options valuation. In fact, if there was no uncertainty, it would be 
trivial to determine the value of the option. Including these uncertainties is a central element of the analysis that 
causes the multiple stochastic paths after prognostic indication as discussed in Section 2. The revenue from a turbine 
(equation (7)), depends on the capacity factor, ܥ௙. The capacity factor is the ratio of the actual power output of a 
turbine over a period of time to the maximum theoretical power that the turbine can generate:  

 
ܴ	 ൌ 	 ሺ ௗܰ௬ሻሺ24ሻሺܹ ௉ܶோሻሺܥாுሻሺܥ௙ሻ  (7) 

where ௗܰ௬ is the number of days, ܹ ௉ܶோ is the power rating of the turbine (600KW in this example), and ܥாு is the 
cost of energy (assumed to be $0.05/KWh). To highlight the uncertainty in the power generated by the turbine 
(which affects revenue), the power is averaged every day and plotted in Figure 8. Dividing this power by 600KW 
gives the capacity factor.  

 
Figure 8. Daily power for a healthy turbine. 
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After obtaining the time-series for the capacity factor, we estimate the drift and shock parameters for the revenue 

from data using simulated maximum likelihood estimation and obtain a drift of 0.18 and a shock of 0.5 (the capacity 
factor is modeled in this manner since wind speeds change over the course of the year). Using the drift and shock 
parameters, we can propagate the uncertainty with time (assuming an initial capacity factor of 0.33, the average 
capacity factor for similar turbines [22]), and simulate 100 paths for the revenue in equation (7). In the case study, 
we use 3 Laguerre polynomials, 100 paths, and assume CM to be the same as the cost of unscheduled maintenance, 
which is assumed to be $11,640 (the cost of a pitch mechanism in 2006 dollars [23]). 

We first consider one failure mode with a remaining useful life of 37 days. The cost avoidance is assumed to have 
an initial value of $6,984, and a drift component of -0.6 and shock of 0.25 for the cost avoidance (the drift and the 
shock are assumptions; they can be estimated when historical maintenance data is available). In this example, we 
assume that at 80% of the RUL (80% of 37 days), there is an increase in the risk of collateral damage if the turbine 
fails. This will result in a cost of failure that is larger than the cost of the failure of the subsystem under 
consideration (the one that indicated an RUL). An example of collateral where a failure of one subsystem can lead to 
a cost that is larger than the subsystem that failed is discussed by Ragheb and Ragheb [24]. In [24], the failure of a 
gearbox can induce damage in other subsystems or even damage the entire turbine; this will eventually lead to a cost 
of failure that is higher than the cost of failure of the gearbox alone. While we make an assumption of an increase in 
the cost of failure in this example, this cost can be estimated from historical data when failure data is recorded and 
used to draw conclusions on the cost and risk of inducing collateral damage in other subsystems in the turbine. In 
this example, we assume that the risk of collateral damage increases at 80% of the RUL, and we model an increase 
in the risk of failure by inducing a jump in the cost avoidance that is simulated by a sharp drop in the mean of the 
cost avoidance. In other words, as we get closer to the end of the RUL, the cost avoidance decreases (because of the 
risk of collateral damage increases). We simulate this change with a jump process, which is a stochastic process that 
has a jump at a specific time instant: 

 
݀ܺ௧ 	ൌ ݐ௧݀ܺߤ	 ൅ ݐ௧݀ܺߪ ௧ܹ ൅ ܺ௧݀ݍ௧ 

 

(8) 

Equation (8) is similar to equation (3) but with the addition of the last term, which is a Poisson process, to model 
a jump in the value. We assume 0.6– = ߤ and 0.25 = ߪ. The values are again assumed, but they can be estimated 
when historical data is available.  

In option pricing, jump diffusion models are used to account for discontinuities in the behavior in asset pricing. 
Discontinuities can be caused by sudden fluctuations in the market such as a market crash or a sudden deviation in 
the value of assets. The jump diffusion process is based on the Poisson process, which can be used for modeling 
systematic jumps caused by surprise effect. An example with the embedded assumptions on the jump diffusion 
process can be seen in [21]. 

Once uncertainties in the revenue and cost avoidance are propagated in time, we obtain the paths for ெܸ (from 
equation (1)). At this stage, we apply the LSM algorithm and compare ெܸ to CM (CM is assumed to be $11,640 in 
this example) to obtain the value of the waiting option.  

Figure 9 shows the value of waiting for the subsystem in the turbine under consideration where a remaining useful 
life of 37 days is assumed. The horizontal axis on Figure 9 is the waiting time; at time 0 a prognostic indication is 
obtained and the system will fail at 37 days. The vertical axis on Figure 9 is the value of the waiting option; this is 
the additional value that the decision-maker obtains from running the turbine through its remaining useful life. Note 
that this is not the value of PHM (such a value is better captured by an ROI model, e.g., [25]), but rather it is the 
additional benefit from capturing the upside effect of uncertainties (such as the high probability of high wind 
speeds). One way to calculate the value of PHM using the waiting options is by compounding the analysis of 
multiple options across multiple subsystems over the life of the turbine and comparing it to the cost of implementing 
and sustaining PHM. Figure 9 shows the value of waiting from 5 days to 37 days.  
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Figure 9. Value of waiting for a 37 day predicted RUL. 
 

The value of waiting in Figure 9 is 0 for the first 7 days. This means that waiting for 7 days will not generate 
additional value from PHM. This is due to the fact that the cumulative revenue generated in 7 days will not 
compensate for the cost of failure. However, after 7 days, the cumulative revenue generated from running the 
turbine compensates for the risk of failure; this is when the value of waiting starts to increase. The value of waiting 
has a peak at approximately 25 days, with a value of waiting slightly larger than $200. The value from waiting is the 
additional benefit that the decision-maker obtains from PHM (knowledge of the remaining life and running the 
system through the RUL). The magnitude of the values in Figure 9 may seem small compared to the system’s cost. 
However, this example calculates the value of the waiting option for one particular subsystem experiencing one 
failure. In reality, the PHM system will generate the waiting option over the lifetime of the turbine (many possible 
failures). Moreover, there are more maintenance options beyond waiting that can potentially create more value. 
Finally this example is for one turbine only; in reality, the turbine is part of a fleet of turbines (i.e., a wind farm) and 
the value would be aggregated for the lifetime of the fleet. 

We note that the value of waiting starts at 0, since the valuation starts when the prognostic indication is obtained. 
At this time, there is no potential to account for the cost of failure from running the turbine since there is no 
generation at time 0. The more we run the turbine through the RUL, the more revenue we will generate (it is 
cumulative). Hence, at time 0, the value of waiting cannot be larger than 0. Furthermore, the value cannot be 
negative because we are representing the opportunity of the upside effect generated from waiting. If the cost of 
failure is larger than the revenue, then waiting has no value (0). This is the asymmetry in options. In other words, we 
are not representing the difference in cost of failure and revenue, but instead the additional value we get from the 
option (i.e., waiting). Note that the value in this example decreases after 25 days (and eventually goes to 0) because 
of the assumptions made that the cost of failure increases at 80% of the RUL. Had this assumption not been made 
(i.e., if there was no effect of collateral damage on cost), the value of waiting would have increasing until the end of 
the RUL. For example, the value of waiting for 3 time units in the example in Section 2.2 is 0.3388 (and not 0). 
When the cost of maintenance and failure is available from historical data, this assumption can be relaxed and 
estimates from actual data can be used to define the distributions that are assumed in this example. 

 

3.2. Placing the Dynamic Maintenance Threshold 

 
Now we demonstrate the value of waiting by considering two turbines exhibiting prognostic indications for different 
components at different times. Considering a timeline from 0 to 53 days, the first turbine has a failure on day 37, and 
the second one on day 53. The prognostic indication is assumed to be obtained 37 days prior to failure for both 
turbines. When the prognostic indication of the first turbine is obtained, the decision-maker does not have any 
information about the time when the second turbine will fail. The value of waiting is first obtained from the least 
squares Monte Carlo algorithm for the data from turbine 1. The uncertainty parameters in the revenue are estimated 
from the power data (similar to the example in Section 3.1) for 37 days prior to failure for turbine 1 (drift of 0.198 
and shock of 0.58). The value of waiting starts increasing on day 9. On day 16 (37 days before the end of life of 
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turbine 2), a prognostic indication for turbine 2 is obtained. After the failure of turbine 1, a penalty equivalent to the 
cost of generation lost by 1 turbine is imposed. The decision-maker is interested in knowing when to maintain given 
the prognostic information and the uncertainties associated with the operation of the system. The time for 
maintenance can be formulated as an integer programming optimization problem: 
 

ݔܽ݉݃ݎܽ
௧
ሺ෍ܿ௧೙ܺ଴

௡

ଵ

ሻ 

 

(9)

where	ݐ is the time at which maintenance can be supported; ܿ௧ is the value of the wait-to-maintain option at time t; 
ܺ଴ is the maintenance decision (ܺ଴ = 0 is the decision to wait and ܺ଴ = 1 is the decision to maintain). 

Figure 10 shows the value of waiting with the annotation of different events.  
 

 
Figure 10. Dynamic threshold based on the value of the option to wait for two turbines. 

 
 

The value of waiting exhibits two local maxima in Figure 10. The first one is influenced by the maximum waiting 
value for turbine 1. But when turbine 2 indicates an RUL, the results show that the dynamic threshold that 
maximizes the value of waiting corresponds to day 30. This is 7 days before the failure of turbine 1, when a penalty 
starts to accrue. In other words, if turbine 1 had been considered individually, it would have been maintained on day 
20; but when new information about a prediction of failure in turbine 2 becomes available, the value of waiting is 
aggregated since the revenue generated by both turbines is now compared to the cost of failure. The combined value 
of waiting dictates the optimal maintenance threshold for the assumed conditions, which we call the dynamic 
maintenance threshold. The decrease after day 30 is due to the proximity of the end of the RUL of turbine 1 and the 
failure imposed if a turbine is down. One result from this example is that the optimal value obtained from using the 
PHM system is found in not waiting until the end of the RUL for either turbine.  

The methodology is applicable to multiple systems in a turbine and multiple turbines in a fleet (farm). It is able to 
set a threshold based on the uncertainties and prognostic information. It should be noted that the analysis in this 
example presents a calculation for the value of waiting that is projected for the predicted RUL. In reality, the 
problem is dynamic: as new information about the degradation or the uncertainties associated with the operation is 
obtained, the model can be updated and the threshold can be set dynamically to maximize the value obtained from 
the PHM system. 
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4. SUMMARY AND CONCLUSIONS  

Engineering systems are incorporating PHM to enable high availability and lower life-cycle costs. Wind turbines 
have emerged as candidates for PHM, and there has been a substantial amount of work done to develop PHM 
methodologies to predict the onset of failures. This paper presents the concept of maintenance options and a method 
to quantify the waiting option for wind turbines, which is a means of quantifying the value of decisions after 
prognostic indication. 

By formalizing maintenance options within a real options framework and developing a cost-benefit-risk model 
that incorporates the value of flexibility (or options), we provide a model for quantifying the system-level value of 
PHM after prognostic indication. The model evaluates individualized maintenance policies for different system 
instances and quantifies the value of PHM at all points in time from prognostic indication to the end of the 
remaining useful life. The model can be updated in real-time and can generate a value of the waiting to maintain 
option at any time. In this paper, we assume that an RUL is obtained from a PHM system; the methodologies for 
predicting this RUL are not discussed and are outside the scope of this work. 

The approach developed in this paper is also demonstrated in an example to set a dynamic maintenance threshold. 
This approach can be applied to multiple systems that might not have the same prognostic distance or the same 
failure modes, and the maintenance threshold is based on maximizing the value of waiting across a fleet of systems. 
The example discussed in this paper considers two turbines with one failure each. The methodology can be applied 
to a fleet of turbines with multiple failures and potentially more options than the waiting option. When the value 
from the option is maximized, a new threshold of maintenance can be set; we define it as the dynamic maintenance 
threshold. The methodology can also be used to support outcome-based contracts. Furthermore, the maintenance 
options provide a framework for system-level decision support, whereby the decision-maker can base the 
management of the system after prognostic indication on a dollar value—a capability that does not yet exist and can 
also enable pricing availability-based contracts. 

The waiting option for wind turbines is only one type of maintenance option. There are potentially numerous 
options. Reducing the load on a system when a prognostic indication is obtained to reduce degradation is an example 
of another option. The valuation of such options may be complex, but their valuation is critical for justifying the 
implementation of PHM economically.  

The methodologies presented in this paper help to address the value of decisions after prognostic indication. There 
are a number of directions for future research. While the convergence of the valuation algorithm is addressed in 
[21], deriving another relationship for the value of maintenance or using other stochastic processes may require 
convergence to be reconsidered. Furthermore, the time-dependent uncertain quantities are assumed to be described 
by Brownian motion in this paper. While Brownian motion has been used to describe the time-dependent uncertainty 
in wind speed, other types of uncertainties may best be modeled by different stochastic differential equations. When 
historical data is available, the uncertain parameters can be estimated directly from the data and the assumptions can 
be relaxed. Finally, we model a sharp increase in the cost of failure using a jump process. This assumption can also 
be relaxed when historical maintenance data becomes available. 

Finally, we note that the model presented in this paper is discussed in the context of a single prediction; we 
assume that remaining useful life is predicted for the system, and we compute the value of waiting for that particular 
time. However, the methods presented in this paper are applicable whenever new information is available: every 
time a new prediction is obtained or when an uncertainty is resolved, the valuation model can be run again to obtain 
the value of waiting for every time step until the predicted RUL.  
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