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Abstract

This paper presents a warranty forecasting method based on stochastic simulation of expected product warranty returns. This methodology

is presented in the context of a high-volume product industry and has a specific application to automotive electronics. The warranty

prediction model is based on a piecewise application of Weibull and exponential distributions, having three parameters, which are the

characteristic life and shape parameter of the Weibull distribution and the time coordinate of the junction point of the two distributions. This

time coordinate is the point at which the reliability ‘bathtub’ curve exhibits a transition between early life and constant hazard rate behavior.

The values of the parameters are obtained from the optimum fitting of data on past warranty claims for similar products. Based on the analysis

of past warranty returns it is established that even though the warranty distribution parameters vary visibly between product lines they stay

approximately consistent within the same product family, which increases the overall accuracy of the simulation-based warranty forecasting

technique. The method is demonstrated using a case study of automotive electronics warranty returns. The approach developed and

demonstrated in this paper represents a balance between correctly modeling the failure rate trend changes and practicality for use by

reliability analysis organizations.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Market conditions have traditionally been the main

factor that determines the terms of automotive warranties.

While expected reliability and quality of the product is

considered an important supporting factor, in reality, the

actual warranty terms are most often determined by

marketing pressures. Currently the terms of the standard

automotive warranty, often referred to as the manufacturer’s

basic warranty are 36 months or 36,000 miles (whichever

comes first) on the majority of vehicle parts (see, for

example, [1]) with additional extended warranties on

selected subsystems. Longer warranty periods are often

used as an enhanced marketing tool; warranty history
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and warranty expectations greatly affect the market value of

new and used cars sold, and lease residual values. Because

of these and other financial and marketing considerations, a

multitude of business decisions are being made based on the

forecasted number of warranty returns for the overall

warranty period and subsets thereof. All the aforementioned

makes the process of improving warranty claims forecasting

even more important, further increasing the need for models

that provide an acceptable accuracy for business decision

making. In addition, a parallel need for warranty forecasting

in industry also arises when the first few months of warranty

claims are being analyzed for the purpose of forward

extrapolation and development of appropriate corrective

actions.

In many industries quality and reliability engineers who

are involved in the warranty forecasting process use

empirical models based on past warranty claims of products

with similar design and complexity adjusted by certain,
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www.elsevier.com/locate/ress

http://www.elsevier.com/locate/ress


A. Kleyner, P. Sandborn / Reliability Engineering and System Safety 88 (2005) 207–214208
experience-based correction factors accounting for the

design and technology changes in the product.

A reasonably accurate, scientific, and user-friendly model

could help to accomplish warranty prediction tasks with

better precision and improve the overall quality of business

decisions requiring estimates of future warranty claims.
2. Warranty forecasting model

In this paper, we will cover the two most common types

of warranty forecasting activities. The first type includes

future product estimates, which are usually conducted in a

product planning stage in order to anticipate the costs

associated with future warranty returns. This type of

analysis is based on the product complexity, technology,

and other design aspects known in advance about the

product. The second type is the ongoing forecasting for

current products, where the warranty returns are known for

the first few months of service and the objective is to

anticipate the final numbers of warranty returns at the end of

the warranty cycle and beyond.

Warranty data usually contains information on all

incidents reported during the warranty period. It is

conventionally accepted that product failure behavior can

be modeled by a ‘bathtub curve’ that is widely used in

reliability literature [2]. There exist a variety of math-

ematical models that adequately represent the reliability

bathtub curve [3–8]. For our purposes we are interested in

a model’s ability to fit the data presented in the automotive

warranty reporting formats described in Section 3. Many

bathtub-curve models are mathematically expressed in

terms of hazard rates (or failure rates), while reliability

engineers are usually more accustomed to working with

reliabilities and percentages of failures. Also since

reliability forecasting is usually the ultimate goal of this

kind of analysis, a model expressed in terms or reliability

would typically be easier to apply directly in engineering

calculations.

Based on the fact that a typical automotive part is

designed for a mission life of 10–15 years, it is very unlikely

that it would be subjected to wear-out failures during either

warranty or extended warranty periods of 3–7 years.

Fig. 1 provides an illustration of an automotive

electronics product family failure rates recorded in terms

of incidents per thousand vehicles (IPTV) see Eq. (1) for

seven different model years1 of the same product family

(model years A–G in Fig. 1). The data shows no wear-out

mode for at least the first 4 years of service
1 Model year is a manufacturer’s annual production period. In the

automotive industry new model year production may start as early as July

of the previous calendar year.
IPTVðtÞ Z
ClaimsðtÞ

NðtÞ
1000 (1)

where
Claims(t)Znumber of claims reported in the period t.
N(t)Znumber of vehicles in the field in the period t.

For any time interval T the relationship between IPTV

and conventional failure rate would be:

lðTÞ Z
IPTVðTÞ

1000T
(2)

where l(T)Zfailure rate for the time interval T.

Fig. 1 suggests that in the majority of the cases the

warranty failure model is sufficiently represented by the

infant mortality and useful life phases of bathtub curve.

A detailed study of the existing warranty of various

product lines of automotive parts performed at Delphi

Corporation showed a clear trend of diminishing failure rate

for the first 8–18 months (see Fig. 2) followed by a flattening

of the failure rate curve for the remainder of the time period

where warranty and extended warranty data were available.

To combine the first two sections of the bathtub curve

and to provide a best fit for the warranty data in Fig. 1 or

Fig. 2 we suggest using a conditional reliability equation

RðtÞ Z RðtsÞRðts/ tÞ ðtO tsÞ (3)

where
R(t)Zreliability at the time interval t.
tSZpredetermined time coordinate.
R(tS)Zreliability at the time tS.
R(tS/t)Zprobability of reaching the time point t, under

the condition that time tS has already been reached.

As mentioned earlier, most of reliability and quality

engineers are more accustomed to working with reliabilities

expressed in terms of commonly used distributions:

Weibull, Exponential, Normal, and Lognormal. Analysis

of the existing data (Fig. 2) shows that tS, can be determined

as the time coordinate where hazard rate stabilizes, and the

failure data with decreasing failure rate in the range [0; tS]

could be fitted by Weibull distribution. Similarly the failure

data in the range [tS; t] could be fit with Exponential

distribution, since the failure rate would remain relatively

constant in this range. This approach is similar to the

method discussed in [9], where the combination of Weibull

and Exponential distributions were used to calculate the

expected MTBF of a hard disk drive. Under the piecewise

scheme described above, (3) becomes

RðtÞ Z eKðts=hÞ
b

eKlðtKtsÞ; tR ts (4)

where
bZWeibull slope often referred as shape parameter.



Fig. 1. Extended warranty charts compiled from Delphi Corporation warranty data for the several model years of the same electronic product mounted in the

engine compartment of an automobile.
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Fig

Cor
hZWeibull scale parameter, often referred as character-

istic life.
lZconstant failure rate after tS.

The time tS can be referred as a change point, the

coordinate where the pattern of data changes requiring a

different data-fitting model [10]. The continuity at
. 2. Failure rates expressed in incidents per thousand vehicles (IPTV) for select

poration. The actual IPTV values have been modified to protect the proprieta
the junction point tS can by achieved by equating the

hazard rates at the point tS. The hazard rate for Weibull

distribution hWeibull at tS is:

hWeibullðtsÞ Z
b

ts

ts
h

� �b

(5)
ed passenger compartment mounted electronic products recorded by Delphi

ry nature of the data.



Table 2

Example ‘Layer cake’ data

Month New vehicles sold Number of failures by month

Month 1 Month 2 Month 3 Month 4

1 15,980 5 3 12 1

2 23,340 5 7 12

3 26,541 6 1

4 18,510 2
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Thus equating hWeibull with the constant failure rate l past

the point tS would produce:

l Z
b

ts

ts
h

� �b

(6)

The overall reliability expressed in (4) has four parameters:

b, h, tS, and l, using (6) to eliminate l, (4) can be

transformed into:

RðtÞ Z exp K 1 C
bðt K tsÞ

ts

� �
ts
h

� �b
" #

; tR ts (7)

Eq. (7) is in a suitable format for a stochastic simulation

such as Monte Carlo analysis, which has been successfully

applied in a variety of parametric studies of reliability [11].

Each of the parameters, b, h, tS, is a random variable and

could be represented by a statistical distribution. The best

way of obtaining those distributions is by observing the past

history of the product. The authors studied warranty returns

for several automotive electronics product families and

identified some common trends in the data. While the

variation of statistical parameters between those groups was

significant, parameter variation within the same product

group was far less apparent. An important factor governing

variation within a product family was found to be the

number of years in production with a tendency for the first

year to have the highest number of warranty claims.

Besides forecasting the expected warranty returns for

future products, this model can also be used for ongoing

forecasting of current products, where the final warranty

prediction is based on the number of claims reported after

the product’s first few months in the field and is subject to

continuous updates. This type of forecasting is often used

to compile monthly reports to the management as well as to

detect potentially serious field reliability problems.
3. Determining the distribution parameters

In this paper, we are going to consider two data formats

commonly used for automotive warranty data reporting. In

the first format, the data is presented in ‘30-day buckets’

where the failure data is divided into 30-day service time

intervals counted from the date of vehicle sale, where all the

failures occurring within each 30-day time interval are

reported in failed quantities or IPTV. The IPTV format (see

example in Table 1) is an easier, faster, and more common
Table 1

Example ‘30-day Bucket’ data

Days in

service

Vehicles in the field

during the time period

Reported

number of

failures

IPTV (incidents per

thousand vehicles)

1–30 10,000 8 0.80

31–60 9000 2 0.22

61–90 7000 9 1.29
form of data reporting and is usually sufficient for the first-

level approach to data analysis. The raw warranty data

typically contains additional information including vehicle

identification number (VIN), vehicle mileage, geographical

information, cumulative costs, cumulative IPTV, and many

other parameters.

If the failed units can be traced to a specific production

lot, this data can be converted into a more comprehensive

format sometimes referred by quality professionals as ‘layer

cake’, which usually combines all sold and failed units on a

monthly basis, as presented in the Table 2. This format

provides information, which allows the user to trace each

failure to a particular production group and can be used to

conduct more sophisticated statistical analyses.

The actual data in Tables 1 and 2 was made up for

example purposes and is not linked to any real product or to

each other. The format in Table 2 is easier to understand and

data in this form can be easily processed with commercially

available software like WeibullCC from ReliaSoft Cor-

poration [12] and be converted into interval-based life data.

Both formats discussed above are acceptable for

obtaining the distribution parameters b, h, tS, however, the

30-day bucket data can be analyzed only on a percentage-

failed basis and is thus unusable for the calculation of

confidence bounds. In contrast, the layer cake data provides

more options for determining a best-fit distribution includ-

ing the estimation of confidence bounds. However, it is

important to mention that the 30-day bucket format can be

considered as a cost/time saving version of layer cake since

it involves fewer data processing steps.

The procedure for determining distribution parameters

starts with obtaining the change point estimation tS. Since

any real data would demonstrate some form of variation

between consecutive 30-day intervals, we suggest using the

Bayesian smoothed hazard function described in [13]. It

would modify the stepwise pattern of the interval-based

hazard function and would provide a continuous transition

between adjacent 30-day intervals using Bayesian esti-

mation of hazard rates. For simplicity purposes the average

hazard rate havg(t) given by Eq. (8) can also be used for this

type of analysis:

havgðtÞ Z
Number of accumulated failures ðtÞ

Total accumulated time in service ðtÞ
(8)

Graphic analysis of the average hazard rate shows the

general trend of saturation starting at tS. One of the criteria



Fig. 3. Change point estimation for tS, lS is the failure rate at tS.
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used for determining the exact change point tS could be the

flattening of the curve to fit within G10% of the boundaries

of the saturated hazard rate value as shown in Fig. 3 (other

criteria may be practical depending on the specific nature of

the data and the shape of the curve).

If the characteristics of the data are different from that

presented in Fig. 3 and do not have a pattern of diminishing

failure rate followed by stabilization, then the parameter tS
can be estimated from visual observation of the plotted data

whenever possible. The majority of the datasets initially

studied by the authors (42 out of 45) did exhibit the

stabilization trend. The remaining three cases did not

display the similar pattern being special cases with

assignable causes of failure. For that reason they were

considered outliers and were not included in the pool of

datasets used for evaluation of distribution parameters of tS.

Procedurally for each set of data the failure numbers

should be split into pre-tS and post-tS intervals. Then each of

the two data sets should be Weibull-fit as a separate group

for determining Weibull parameters b and h. Analysis of the

product groups mentioned previously, demonstrated stable

trends, showing that the pre-tS Weibull slope b (we will

refer to it as b1) typically stays in the range of 0.65–0.85.

The statistical analysis of more than 40 different data sets

with the @Risk software package [14] demonstrated that a

two-parameter Weibull distribution was indeed the best-fit

distribution for the pre-tS data in almost half of the cases.

For the remainder of the datasets Weibull was in the top five

out of 28 different distribution options thus supporting the

choice of Weibull distribution for this procedure. The

similar analysis of post-tS data showed that Weibull slopes

b2 in all analyzed cases were within G10% of b2Z1.0, thus

confirming the constant failure rate assumption for the post-

infant-mortality stage.
2 When using ReliaSoft WeibullCC with the ‘30-day bucket’ format it

is best to use a ‘free form data’ format, which is made up of X time to failure

data and Y position data in % in which ranks are not assigned to the times.

The solution method is least squares (rank regression in X or Y). The time

interval (30-day 60-days, etc.) would represent the X-axis and 0.1!IPTV

(cumulative percent failed) would be plotted on the Y-axis.
4. Forecasting procedure

Two separate procedures are suggested for the two

data formats mentioned in Section 3. Both can be
performed using commercially available reliability anal-

ysis software.2

The data presented in layer cake format allows more

sophisticated data processing, since the user is able to obtain

exact failure time intervals and the number of suspended

items. This more detailed information allows the implemen-

tation of Maximum Likelihood Estimator (MLE) Weibull

analysis or other distribution best-fit approaches and

provides the confidence intervals on the results of the

best-fit approximation. It is also important to address the

effect of the production year. For example, it has been

observed that quality usually improves with the number of

years in production due to continuous improvement of

manufacturing procedures. Thus the obtained b and h

coefficients can be categorized not only by product features,

like model numbers, functionalities, car platforms, etc. but

also by the number of years in production for the same

product group.

It is also important to mention the multi-dimensional

aspect of warranty specifications. Since automotive warran-

ties are usually expressed in both time and mileage terms,

i.e. 36 months or 36,000 miles whichever comes first [1], it

is a two-dimensional warranty [15], which can be accounted

for by using the methodologies presented, for example, in

Refs. [16,17]. For automotive electronic parts it is more

appropriate to use time as the primary usage variable since

there are no moving parts involved in the process of wear-

out, though the mileage variable is also important in

estimating the expected warranties. Any of the method-

ologies described in the referenced literature can be applied

to the proposed model in order to add an additional

dimension of warranty. For example, if warranty is

expressed in terms of {T0, M0} with T0 being specified

maximum time period and M0 specified maximum mileage,

and if we can obtain the probability distribution function of

reaching mileage M0 at time t, f(tjM0), then

FðTÞWarranty Z

ðT

0
½1 KRðtÞ�f ðtjM0Þdt (9)

where F(T)WarrantyZfraction of accumulated failures cov-

ered by warranty for the time period T.

Or after substituting (7) into (9):

FðTÞWarranty Z

ðts

0
½1 KeKðt=hÞb�f ðtjM0Þdt

C

ðT

ts

1 Kexp K 1 C
bðt K tsÞ

ts

� �
ts
h

� �b
" #" #

!f ðtjM0Þdt; T R ts ð10Þ



Table 3

Product 1 (1st year production lot)

Days in service IPTV Total % failed

0–30 3.03 0.30

31–60 1.50 0.45

61–90 1.41 0.59

91–120 1.39 0.73

121–150 1.32 0.87

151–180 1.31 1.00

181–210 1.37 1.13
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Procedurally, each trial in the Monte Carlo simulation

would include solving the integral (10) for every generated

set of random variables b, h and tS.

In addition, (7) can be used for ongoing warranty

forecasting for current products. Direct application of Eq.

(7) in conjunction with (10) allows using pre-tS data (data

from several months of warranty return) to predict the post-

tS data expanding to the normal warranty period, extended

warranty period, and beyond.
211–240 0.49 1.18

241–270 0.36 1.22

271–300 1.70 1.39

301–330 0.45 1.43

331–350 1.70 1.60

361–390 1.76 1.78

391–420 1.74 1.95

421–450 0.65 2.02

451–480 2.90 2.31

481–510 0.92 2.40

511–540 2.80 2.68

541–570 0.30 2.71

571–600 1.20 2.83

601–630 0.20 2.85

631–660 0.15 2.87

661–690 0.55 2.92

691–720 2.40 3.16

721–750 0.60 3.22

751–780 2.00 3.42

781–810 2.50 3.67

811–840 0.90 3.76

841–870 5.00 4.26

871–900 3.27 4.59

901–930 1.12 4.70

931–960 0.21 4.72

‘30-Day bucket’ warranty data for 960 days of service.
5. Automotive electronics application example

For simplicity we will consider only the data presented in

30-day bucket format. Let us assume that we must forecast

the 5-year/50,000 miles extended warranty of the new

passenger compartment mounted product and let us also

consider the effect of production start (usually the first year

production) on the rate of returns for this part. The warranty

data is available for four different models with similar

features and complexities. Due to limited space we will

present the initial data for only one model called Product 1,

1st year production lot (Table 3), and show the rest of the

data in a statistical distribution format. As before, the

presented warranty numbers will be altered due to

proprietary nature of the data.

Since the data comes in 30-day bucket format it is best to

apply the free form data format (percentages failed) to pre-tS
(b1) and post-tS (b2) separately.

Typically the type of information presented in Table 4

would contain a much larger amount of data with more

automotive product categories due to the large number of

parts and applications. For instance, the same models can be

subdivided by vehicle platforms, where the same type of

products would be considered as a different group if they

were installed on light trucks as opposed to mid-size cars.

The larger the number of similar product lines, the better the

confidence intervals for the results obtained with Monte

Carlo simulation.

There are several possible ways of processing the data

presented in the Table 4. All the data can be analyzed

together by finding the best distributions for each of the

three parameters b1, h, tS, and based on the obtained

distributions, model those values for Monte Carlo simu-

lation with (7) or (10). However, if we are, for example,

interested in the warranty of the product manufactured

within the first year after the start of production, only

the data pertinent to the first year of production will be

analyzed (see the four bold rows in Table 4). Based on these

four data groups the following distributions were obtained:
tS
 Lognormal distribution: mZ5.71, sZ0.186
b1
 2-parameter Weibull distribution: bZ6.62, hZ0.815

(please note that those are the distribution parameters of

b1, and not that of the original failure data)
h1
 Normal distribution: mZ247,830, sZ30,069.
In order to account for the effect of two-dimensional

characteristics of warranty we need to estimate the

probability distribution function f(tj50,000 miles) of mile-

age reaching 50,000 miles at time t. First, using the

dealership data containing the analysis of dates and

mileages associate with each warranty claim we can

construct a probability distribution function of daily mileage

fDaily(m). Our data was based on the sample of 1000

warranty claims containing both time and mileage infor-

mation that was best-fit with two-parameter Weibull

distribution with shape parameter bZ1.55 and scale

parameter hZ41.1 miles (66.1 km). Using those parameters

we obtained a conditional probability distribution

f(tj50,000 miles), which is based on daily distribution

mileage above and is best represented by Lognormal

distribution with parameters: mZ7.53 and sZ0.904.

A 10,000 sample Monte Carlo simulation of expected

warranty returns at the 5-year mark (1825 days) produced

the following results according to Eq. (10).

Mean value for cumulative return of claims covered by

warranty was F(5 yr)Z2.2% (50% confidence). With upper

80% confidence this value reaching F80%(5 yr)Z3.1%.



Table 4

Results of Weibull analysis of each data set for four product groups

Product tS (days) b1 (pre-tS) h1 (days) b2 (post-tS)

Product 1. 1st year production lot 390 0.668 205,781 1.21

Product 1. 2nd year production lot 270 0.761 378,248 0.961

Product 1. 3rd year production lot 420 0.872 501,320 1.03

Product 2. 1st year production lot 330 0.890 290,258 0.920

Product 2. 2nd year production lot 420 0.793 483,692 0.986

Product 3. 1st year production lot 240 0.731 242,725 1.06

Product 3. 2nd year production lot 180 0.903 618,440 1.02

Product 4. 1st year production lot 270 0.912 252,551 0.946
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This example demonstrates the use of (10) with real data

to perform a reliability/warranty prediction. A common

simplistic method to treat the data associated with this

example would have been a Weibull analysis of early

failures for existing parts with similar design features. In our

case, a simple Weibull analysis of early failure data that

accounted for the 2-D aspect of the warranty would produce

F(5 yr)Z0.74%, which is significantly lower than the result

obtained from Monte Carlo simulation using (10). Weibull

analysis of the early failures often presents an over-

simplification of the science that does not capture the

trend change in the failure rate. Alternatively, detailed

statistical approaches [3–8] adequately represent the bathtub

curve, but are not formulated for forecasting and are

generally not practical for use with real data and its

associated uncertainties.
6. Conclusions

The model presented here offers a straightforward

solution to a complex two-dimensional warranty prediction

problem. The solution is easy to implement within Monte

Carlo or other types of stochastic simulations because it is

represented by a single closed-form equation. The pro-

cedure allows the user to practically accomplish two major

reliability prediction tasks: (1) the forecasting of future

product warranty at a product planning stage, and (2) the

ongoing forecasting for current products, where the

warranty returns are known for the first several months of

production. This method can be used to predict the number

of failed parts, which would not be reflected by warranty

claims due to mileage exceeding warranty limit. In addition,

the methodology also enables the accurate calculation of

various life cycle cost components.

The approach developed and demonstrated in this paper

represents a balance between correctly modeling the failure

rate trend changes and practicality for use by real reliability

analysis organizations. This approach can be generalized to

work with a mixture of other applicable statistical

distributions and should be suitable for implementation

using other non- Monte Carlo stochastic methods.
The method has been demonstrated on an automotive

electronics example and shown to predict the expected

number of claims for any specified period accounting for the

effect of two-dimensional versus single-variable warranty.

The demonstration clearly showed that simplistic data

fitting approaches do not adequately model the real

application data.
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