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Abstract 

This paper presents a framework for 
optimizing the location(s) and characteristics 
(fault coverage/test cost, rework success 
rate/rework cost) of Test/Diagnosis/Rework 
(TDR) operations in the assembly process for 
electronic systems. A new search algorithm 
called Waiting Sequence Search (WSS) is 
applied to traverse a general process flow in 
order to perform the cumulative calculation of a 
yielded cost objective function. Real-Coded 
Genetic Algorithms (RCGAs) are used to 
perform a multi-variable optimization that 
minimizes yielded cost.  Several simple cases are 
analyzed for validation and a general complex 
process flow is used to demonstrate the 
applicability of the algorithm.   
 
1. Introduction 
     Performing trade-offs of where in an 
assembly process to test and what level of test, 
diagnosis and rework to perform are key to 
optimizing the cost and yield of an electronic 
system’s assembly. The level of testing, 
diagnosis and rework performed is defined by 
the following feature parameter combinations: 
fault coverage/test cost, diagnosis success 
rate/diagnosis cost, and rework success 
rate/rework cost. 
     Previous research efforts have treated the 
economics of test for electronic systems.  Test 
economics modeling and methodology 
development ranges from classical relations 
between fault coverage and yield [1], to the 
development of economic models for analyzing 
the financial aspects of test investments [2] and 
the tradeoffs associated with design for test [3].  
Many modeling efforts have focused on the 
development of test step models for inclusion in 
process flow1 based cost analyses, e.g., [4]-[8].  
                                                 
1 A process flow is a set of process steps in an application-
specific sequence. 

These models vary in complexity, but in general 
they take incoming costs and yields (from 
upstream process steps) and determine the cost 
and yield of the product after testing to specified 
fault coverage has been performed.  In most 
cases, some type of diagnosis and rework can 
also be modeled.  Persons involved with 
modeling the economics of a product’s 
manufacture can use these models within the 
larger manufacturing process flows.   
    Previous efforts using Test/Diagnosis/ Rework 
(TDR) models have been confined to evaluating 
the impacts on product manufacturing when the 
locations of the test operations (relative to the 
manufacturing process steps) are manually 
chosen. Optimization of the feature parameter 
combinations of testing concurrent with a search 
to determine the optimum location(s) for TDR 
operations in a process is not known to have 
been addressed in previous work. The target of 
this paper is to address the following questions: 

• How much fault coverage should be 
required?  

• Where (in a process) do I put the test 
locations?  

• When do I need to do the rework? 
• How many rework attempts should be 

made? 

     The trade-off process has the purpose of 
making the best choice between various possible 
versions of tests and reworks, and to suggest the 
values of feature parameters of testing in order to 
minimize an objective function associated with 
the process flow. To achieve the goal, the 
following three items have been investigated: 

1. Computations of a single TDR operation. 
2. A searching algorithm to traverse all process 
steps in a general process flow. 
3. Multi-variable optimization using Real-
Coded Genetic Algorithms (RCGAs).     

 



2. The Optimization Method 
     The framework for optimizing the 
implementation of TDRs in a process flow is 
shown in Figure 1. In the model, the process 
flow for manufacture or assembly of the 
electronic system is first generated. Then 
candidate TDR operations are inserted into the 
process flow in all possible locations, i.e., 
between all process steps as an initial guess (if 
the TDR operations can be inserted according to 
specific experiences the optimization will be 
more efficient). Starting with the process flow 
and the initial guess of TDR operation locations, 
a pre-analysis is executed to sort similar process 
steps and merge branches to decrease complexity 
of process flow. A new search algorithm (see 
Section 4) is applied to traverse the entire 
process to perform the cumulative calculation of 
the objective function (yielded cost). RCGAs are 
used to perform a multi-variable optimization 
that minimizes yielded cost. 
     The remainder of the paper is organized as 
follows: Section 3 reviews the cost model used 
for the computations of a single TDR operation 
in the process flow. Section 4 proposes a new 
graph-based search method, named “Waiting 
Sequential Search”, which is applied to general 
process flows in order to search all the step 
nodes in the graphical representation and derive 
cumulative objective function. In Section 5, 
RCGAs are used to implement the optimization 
of the TDR operations and the parameters 
associated with them in the process flow. Test 
cases are also provided in Section 5 to verify and 
demonstrate the applicability of the model. 
 
3. The Test/Diagnosis/Rework Model 
     To involve all the effects of the feature 
parameters on a general process flow and how 
they relate to each other, a comprehensive model 
was developed by Trichy et al. [7]. This model 
provides a detailed formulation of the feature 
parameters for a single TDR operation. Figure 2 
shows the content of the model and detailed 
formulations are given in [7]2.       
     This model provides the accurate computation 
of the feature parameters: Cout and Yout, etc. for a 
single TDR operation in a process flow in which 

                                                 
2 Note, the following typographical errors should be 
corrected in [7]: In (2) and (3), the maximum of the 
summation should be n-1 instead of n, and (4a) can be used 
for either definition of fp with changed to . In 

(13), the subscript of N
1ndN

+ nd1N
r should be i-1 instead of i when i>0. 

 

several variables—Ctest and Crew are defined as 
the constants. For real processes Ctest is not a 
constant and instead is related to the fault 
coverage of the test. The rework yield (rework 
success rate) is also not a constant. It depends on 
the specific rework actions taken. In practice the 
rework operation may cause additional defects to 
be inserted in the product, [9]. For use in this 
work, the model in [7] is extended by defining 
general forms of the relationships among the 
feature parameters, e.g., the costs of test and 
rework in terms of fault coverage and rework 
yield respectively.      

Generation of
Process Flow

 Placement of  Test/
Diagnosis/Rework

Package

Pre-Analysis of Process
Flow

Searching in the Graph

Objective Function

RCGAs Optimization

Robust Analysis

 
Figure 1: The framework for optimization of TDR 

operation location(s) and characteristics in a 
general process flow. 

     A relationship between the cost of test 
(proportional to test time or number of tests) and 
fault coverage has been suggested by Goel [10]. 
Empirical data shows that the test process can be 
divided in two phases. A relatively small subset 
of TI (number of tests in Phase I see Figure 3) of 
the total set of tests provides a fault coverage 
ranging from 65% to 85% for most 
combinational logic circuits [10]. For Phase II of 
the test generation, the number of additional tests 
required is approximately a linear function of the 
number of untested faults remaining at the end of 
Phase I. Unlike Phase I, in Phase II each 
generated test tends to detect fewer faults than 
the one before it and the average cost per 
detected fault increases.  
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Figure 2: Organization of the Test/Diagnosis/Rework (TDR) operation, [7].   

     For the purpose of  simplifying the 
relationship, an exponential function can be used 
to approximately simulate Phase I and a linear 
function in Phase П on the assumption that Phase 
II could not reach a full coverage (100% of fault 
coverage) in practical testing. Assuming that the 
test cost is proportional to the number of tests, a 
relationship between test cost and fault coverage 
can be derived,  

1) (0,f,C]r)fln(1[bpC cfttctttest ∈+−−=      (1) 

where pt is the cost coefficient; bt is the 
coefficient of test characteristic, rt is the fault 
ratio, fc is the fault coverage of test, Cft is the 
fixed cost of test3.  Figure 4 shows a plot of (1) 
using the values in Table 1.  
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yield (yr) and rework cost (Crew) for the first 
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Figure 4: Example relationship between the test 
cost and fault coverage. 
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Figure 3: Typical curve of untested faults 
versus the number of tests, [10]. 

1) (0,y,C]r)yln(1[bpC rfrrrrrrew ∈+−−=     (2) 

     An alternative model for calculating the 
rework cost has been proposed in [8], which 
relates Crew with the cost of rework equipment 
and rework time.  
     Functional relationships between fault 
coverage and test cost, and rework yield and 
rework cost obviously depend on the type of 
system being considered. The relationships in (1) 
and (2) were used for the remaining work in this 
paper as examples only.  The methodology that 
is the subject of this paper, will work 
successfully with alternative models. 
     After the single TDR operation is resolved, 
the next issue is to cumulatively compute the 
objective function of feature parameters of a 
general process flow that includes multiple TDR 
operations. For the purpose of derivation of the 
objective function, search algorithms are needed 

 

Table 1: Example values of factors in (1) and (2). 

pt bt rt Cft pr br rr Cfr

0.02 -288 8.2 1 0.02 -300 10 1 
                                                
 Cft accounts for fixed costs associated with testing, i.e., 
here is a minimum fixed cost for having even a small fault 
overage. 

to traverse the process flow with the computation 
performed according to the sequence among 
process steps. 
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4. Process Flow Search Algorithm  
     Based on the analysis of the TDR model in 
Section 3, we know how to compute the feature 
parameters of a single test step. A general 
process flow may, however, have many different 
(possibly independent) TDR activities located 
within it. The next issue to be addressed is how 
to obtain the objective function (yielded cost, 
i.e., cost divided by yield) for an entire general 
process flow. Graphs are useful in representing 
the process flow, i.e., complex systems involving 
binary relationships among process steps [11]. 

4.1 Graphical representation of a process flow 
      First, we review the basic graph notations 
that are used in this paper. A graph consists of 
a set of nodes and a set of edges , 

. Here denotes the entire process 
flow, denotes the process steps and an 
edge denotes the directed flow 
between two adjacent process steps. The degree 
of a node is the number of the neighbors adjacent 
to it. We write when is in a 
directed graph (DIGRAPH) [11,12]. We 
define PRED(X) as the set of all predecessors 
(process steps preceding X) of node X, and 

as the set of successors (process steps 
after X) of X. if , then  
and . The indegree of a node 
X is the cardinality of and the 
outdegree of a node X is the cardinality of 

. The graphical representation of an 
example complex process flow is shown in 
Figure 5. 

G
V E

>=< EV,G G
V

EYX, >∈<

YX → EYX, >∈<

SUCC(X)
YX → PRED(Y)X ∈

SUCC(X)Y ∈ id(v)
PRED(X)

od(v)
SUCC(X)

4.2 Definitions of types of vertices (process 
steps) 
     From the analysis of a generic process flow, 
four types of basic steps have been identified. 
The process steps can be defined in the following 
ways: 
• Start Step, ,  0id(v) and 1od(v) ==
There are no inputs to the Start Step and just one 
output from it.  There may be multiple Start 
Steps in a complex process flow. 
• Sequence Step,  1id(v) and 1od(v) ==
There is one input and one output for a sequence 
step.  Sequence Steps are the most common type 
of step in process flows for electronic systems. 
• Cross Step,  1id(v) and 1od(v) ≥=
There are multiple inputs and just one output 
associated with this kind of step. The complexity 

of the problem is significantly increased by each 
Cross Step in the process flow.    
• End Step, 1id(v) and 0od(v) ≥=   
An End Step represents the end of the process 
flow, which merges all the branches to one. The 
objective function of the process flow is derived 
from an End Step.  There may only be one End 
Step in a process flow. 
 

4.3 Waiting Sequential Search (WSS) 
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Figure 5: Example graphical representation 

 of a complex process flow. 

     To derive the objective function of a process 
flow, every process step needs to be searched in 
order to perform the cumulative computation. 
Significant previous work on graph-based search 
algorithms exists, e.g., [13,14]. Several 
algorithms have been applied to resolve search 
problems similar to the one posed here, [11,12]. 
As to the graph-based representation of our 
process flows, there are several specific features 
that make it attractive to propose a new search 
algorithm to perform an efficient search in the 
process flow. 
   From the Figure 5, the following features of 
the general complex process flow can be 
observed: 
• The  1od(v) ≤ is always true for all the 

vertices (process steps) in the process flow; 
• There are sequential search requests for the 

graph, i.e., only when all the predecessors 
of have been visited, then 

could be visited. 
PRED(Y) v(Y)
v(Y)

     WSS begins from the lowest-numbered vertex 
that belongs to a Start Step then proceeds to 
search the next step. By checking the type of the 
successor, the algorithm decides to continue to 
search to the next Sequence Step or wait at a 
Cross or End steps. After moving to the next 
step, the corresponding computation of feature 
parameters of the previous step is performed and 
the outcome is stored in a data table in which all 
the property information associated with process 
steps is recorded. If Cross or End types of steps 
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are encountered, the visitation status of all 
predecessors will be checked. If all the 
predecessors have been checked, the searching 
continues, if not, the search begins from another 
Start Step type of vertex until the last Start Step 
vertex is visited. The algorithm requires that the 
searching of the next step continue only after all 
the branches of the present step have been 
visited. There are waiting actions for the 
sequential search based on the characteristics of 
the process flow. The searching process for the 
complex process flow example shown in Figure 
5 using WSS is described below: 

1. First, begin from the lowest number of Start 
Steps (2), (2) → (6), check whether all   the 
other branches have been searched, compute 
then wait; 

2.  (10) → (8), check the other branches and 
wait; 

3.  (25) → (14), wait; 
4.  (27) → (22), wait; 
5.  (29) → (7), wait; 
6.  (33) → (6), wait; 
7.  (42) → (45) → (47) → (9), wait; 
8.  (44) → (4) → (7) → (15) → (6) → (14), 

wait; 
9.  (53) → (70), wait; 
10. (66) → (70) → (21) → (22) → (14) → (9) 
→ (8), (8) is an End Step, all the branches 
have met and the process ends. 
 

4.4 Multi-variable optimization function 
     The objective of optimizing TDR location(s) 
and characteristics is to minimize the yielded 
cost of the entire process flow [15]. The 
objective function in which feature parameters of 
all possible TDR operations are considered can 
be derived from sequential cumulative 
computation from the Start Steps to the End 
Step. When the WSS algorithm traverses the 
entire process flow, a cumulative function is 
computed to be used as the objective function 
that needs to be minimized in the optimization.  
The optimization problem becomes: 

∑
=

∈

n

1i
m,2,1YXx

)xx(xCmin
iii

L                             (3)                                                                                    

     Complex process flows in electronic systems 
assembly with hundreds of process steps are not 
uncommon. A general optimization of such a 
process flow requires an equally large stream of 
TDR operations resulting in several hundred of 
variables to be optimized for the trade-off 
analysis. Traditional Genetic Algorithms (GAs) 
use the binary representation that evenly 
discretizes a real variable space. Although 
binary-coded GAs (BCGAs) have been 
successfully applied to a wide range of 
optimization problems, they suffer from the 
disadvantage that when they are applied to the 
real-world problems involving a large number of 
real variables the string encoding the variables 
have a large string length [16,17] (because the 
binary substrings representing each parameter 
with the desired precision are concatenated to 

where,  
m = number of feature parameters to be 

optimized; 
n = total number of process steps with all 

possible TDR operations included; 
CY = yielded cost of the process flow, 

cumulative cost divided by final yield. 

     In the optimization, first the TDR operations 
would be placed in all possible locations or be 
chosen according to expert suggestions. The fault 
coverage ( ), rework yield ( ) and rework 
attempts for the i

icf
irY

th TDR operation need to be 
optimized in order to minimize the total yielded 
cost of the process flow. For example, for the 
complex process flow in Figure 5, there are 22 
(including the one location after the End Step-8) 
possible TDR operation locations following each 
of the process steps if there were no specific 
locations constraints as to where a TDR 
operation could not be placed provided by the 
user. The objective function can be written as 
(4), if just fault converge and rework yield of the 
TDR operations are to be optimized,  

[0,1]X,)Y(fCmin
22

1i
r,cYXY,f ii

iric

∈∑
=

∈
                  (4) 

In Section 5, Real-Coded Genetic Algorithms 
(RCGAs) are applied to minimize the objective 
function with feature parameters constrained to 
practical ranges. 
 
5. Optimization with Real-Coded 
Genetic Algorithms (RCGAs) 
     To optimize feature parameters of possible 
TDR operations in order to find the global 
optimum of yielded cost of the process flow, 
genetic algorithms (GAs) are used. GAs are 
stochastic, directed search algorithms that have 
proved useful in finding global optima in both 
static and dynamic environments [16]. GAs work 
with large populations of candidate solutions that 
are repeatedly subjected to selection pressure and 
which undergo naturally occurring genetic 
operations in the search for improved solutions. 
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represent an individual). Another drawback of 
the BCGAs applied to parameter optimization 
problems in continuous domains comes from the 
discrepancy between the binary representation 
space and the actual problem space. A simple 
solution to these problems is the use of the 
floating-point representation of parameters 
[18,19]. Using RCGAs, an individual is coded as 
a vector of real numbers corresponding to the 
variables and the string length reduces to the 
number of variables.  
     With RCGAs integrated, a process flow cost 
optimization modeling system according to the 
framework in Figure 1 has been developed to 
determine the optimum placement and 
characteristics of TDR operations in general 
process flows. The system results in suggestions 
of where the TDR operations should be inserted 
and not inserted, and what the optimal values of 
feature parameters of testing and rework should 
be based on the optimization analysis of the 
objective function. The following subsections 
provide the verification of the optimization 
model compared with functional computations in 
simple cases and a general process flow 
demonstration. 

5.1 Verification strategy 
     To provide testing and demonstration of the 
approach the following test cases are used: 
  Test Case 1: Single-test case, fault coverage 
varies and no rework is included; 
  Test Case 2: One-TDR operation case in which 
fault coverage and rework yield are allowed to 
vary (a maximum of one rework attempt 
assumed); 
  Test Case 3: A general process flow case with 
multiple TDR operations and variable fault 
coverages and rework yields (a maximum of one 
rework attempt assumed). 
     Test Cases 1 and 2 are trivial and used to 
validate the optimization model by comparison 
with hand calculations of the yielded cost 
associated with the process flow. The cases are 
categorized into high-yield and low-yield inputs 
in order to reflect the impacts of input yield on 
the optimum. Test Case 3 demonstrates the value 
of the optimization methodology on a case where 
the optimum placement and characteristics of the 
TDR operations is not obvious. 

Table 2: Values of input parameters 

 
 

5.2 Analysis of the simple cases  
     For the simple process flow in Figure 6, the 
optimum solution can be determined from a 
simple step computation. 

5.2.1 Single-test case (Test Case 1) 

Step 1 Step 2
Cin

Yin C1
Y1

C2
Y2

Cout

Yout

Test

Ct
fc

Diag.Rew.

Cd
fd

Cr
fr

 
Figure 6: Simple two-step process flow with one  
possible TDR operation inserted between them.  

     If there is no test, the Cout and Yout are 
computed using (5) and (6) respectively, 

21inout CCCC ++=                                     (5)  

21inout YYYY =                                       (6) 

the final yielded cost can be derived as (7),        
( )

21in

21in

out

out
Y YYY

CCC
Y
C

C ++
==                     (7)  

To evaluate this expression, the input parameters 
in Table 2 are used. Substituting the inputs in 
Table 2 into (7), the yielded cost is given as (8), 

⎩
⎨
⎧

=
yield)-(high

yield)-(low
Y    41.64037

    266.017
C                           (8) 

     If one test (no rework) operation is inserted 
between Step 1 and Step 2 in Figure 6, the cost 
and yield of the process flow is given by, 

2f
1i

test1in
out C

)Y(Y
C)C(C

C
c

n

+
++

=                         (9) 

2
)f(1

1inout Y)Y(YY c−=                                   (10) 
( )

21in

f
1in2test1in

out

out
Y YYY

)Y(YCCCC
Y
CC

c+++
==                  (11) 

substituting (1) into (11), the yielded cost of the 
process flow becomes, 

21in

f
1in2cttttft1in

Y YYY
)Y(YC)fln(1pb)prCC(C C

c+−+−++
=

  
(12) 

 The equation can be rewritten as, 
cf

cY CD)fBln(1AC +−+=                         (13) 

where
21in

ttft1in

YYY
prCCC

A
−++

= ,
21in

tt

YYY
pb

B = , 

21in

2

YYY
CC = , 1inYYD = . 

 Cin Yin C1 Y1 C2 Y2
High-Yield 21 0.97 10 0.98 7 0.93 
Low-Yield 21 0.48 10 0.32 7 0.93 
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Figure 7 plots (13) for the high-yield and low-
yield input cases respectively: 
  1. For high-yield inputs, the yielded cost of the 
one-test case primarily depends on the change of 

 instead of the power of the fault 
coverage (i.e., D  in (13) is very small). The 
minimum of yielded cost should be at the point 
when the fault coverage is zero. This is to say 
that the minimum yielded cost is for no test 
inserted into the process flow, which makes 
intuitive sense. 

)fln(1 c−

  2. For low-yield inputs, we can see that (13) 
clearly differs from the characteristic of curve of 
yielded cost at high-yield inputs due to 
increasing importance of the power of the fault coverage in determining the yielded cost of the 
product resulting from the process flow. The 
minimum of yielded cost should be between 
$260 and $280 while the optimal fault coverage 
falls into the range from 0.2 to 0.3.  
 
Verification for high-yield inputs      
     The results of the simple calculations above 
are used to check the optimization methodology 
developed in this paper. RCGAs are applied to 
cases of high-yield and low-yield inputs 
respectively. The specification of RCGAs is: 

• Maximum generation= 20 
• Population size= 50 
• Mutation probability= 0.1 
• Crossover probability= 0.95 
• fT = 0.1 4

• Termination criteria = maximum generations     

                                                 
4 The threshold of fault coverage, fT , is defined as the 
minimum non-zero fault coverage that we can purchase.  For 
any fault coverage below this threshold, there is considered 
to be no test present (zero fault coverage and zero test cost). 

The results from the optimization of yielded cost 
in the single-test case at high-yield inputs are 
shown in Figure 8. 

 
Figure 7: Yielded cost of process flow versus 

 fault coverage of test. 

    In the first generation, the RCGAs have found 
the optimized solution and show the best fitness 
(the best value of objective function in one 
population) of 41.64037 when the corresponding 
fault coverage is set at a very small value. After 
the evolution of 20 generations (termination 
criteria), the algorithm converges to the same 
value of yielded cost, which agrees with (8). In 
the last generation, the fault coverage 
optimization terminates at a small amount of 
fault coverage (0.01495), lower than the 
threshold for testing to be present. The test is 
thus removed from the process flow based on the 
optimization analysis from the RCGAs, which 
coincides with the characteristics of Figure 7 
(high-yield relation). In addition to validating the 
optimal yielded cost of the process flow, RCGAs 
are continuously convergent in searching for the 
optimum, see Figure 8, and the mean (mean 
value of objective function in one population) of 
yielded cost levels out as well. 
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Figure 8: Optimization of yielded cost in the single-

test case (Test Case 1) at the 
 high-yield level. 

Verification for low-yield inputs      
    The specification of RCGAs used in the low-
yield input scenario is identical to that applied in 
the high-yield case except the maximum number 
of generations has been increased to 50. The 
optimal solution of $265.1056 and a fault 
coverage of 0.2707 that agrees with the 
observation from Figure 7 (low-yield relation) 
and it is smaller than the result of computed in 
(8) in which there is no test present. 
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5.2.2 One-TDR case (Test Case 2) 
     In this test case, a complete TDR operation is 
placed between the two process steps in Figure 6 
in order to trace the effect of rework yield to 
yielded cost as well as fault coverage. 
Optimizations of one-TDR case with feature 
parameters at high-yield and low-yield inputs are 
given in Figure 9. The optimal values of fault 
coverage and rework yield validate the same 
conclusion that there is no need for a TDR 
operation for high-yield inputs. In Table 3, the 
optimum of yielded cost reaches $41.6403 (the 
same value with the one in single-test case) when 
the fault coverage convergent to a very small 
amount (smaller than fT) and the rework yield 
levels out without convergence in Figure 9, i.e., 
the rework is useless and should be removed for 
the high-yield inputs. 
     For the low-yield inputs, the rework operation 
plays an important role on improving the yield of 
process flow. Table 4 shows an optimal yielded 
cost of $99.2924, which is much lower than the 
value we have computed in Section 5.2.1 when 
the no rework operation was considered.  

Table 3: Results of RCGAs applied in the one-TDR 
case at high-yield inputs (Test Case 2). 
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Figure 9: Optimization histories of feature 
parameters in one-TDR case (Test Case 2). 

Gen. Best 
Fitness ($) 

Mean ($) Fault 
Coverage 

Rework 
Yield 

1 44.26007 51.63859 0.055283 0.857406 
2 44.26007 46.5915 0.055283 0.857406 
3 44.26007 45.59374 0.055283 0.857406 

M  M  M  M  M  
48 41.6403 43.80089 0.015053 0.507313 
49 41.6403 43.77923 0.007691 0.421582 
50 41.6403 43.86956 0.015051 0.408746 

Table 4: Results of RCGAs applied in the one-TDR 
case at low-yield inputs (Test Case 2). 

 

Gen. Best 
Fitness ($) 

Mean ($) Fault 
Coverage 

Rework 
Yield 

1 103.0425 184.1419 0.513008 0.973706 
2 100.6619 129.323 0.7451 0.944974 
3 100.5055 111.2269 0.738354 0.944896 

M  M  M  M  M  
48 99.29243 110.2903 0.643252 0.927038 
49 99.29243 110.9406 0.643252 0.927038 
50 99.29243 111.3758 0.643252 0.927038 

 5.2.3 Optimization in complex process flow 
(Test Case 3)  

For use as a general demonstration, the 
process flow shown in Figure 10 has been used 
(the inputs of steps in Table 5). Possible TDR 
locations have been marked. For the comparison 
analysis, the projection of optimum fault 
coverage and rework yield of all possible TDR 
operations for various fixed cost values of test 
and rework are shown in Figure 11 and 12. 
Figure 13 presents the optimization of yielded 
cost of the complex process flow, in which the 
optimum of the objective function converges as 
the number of generations of RCGAs increases.  

Figure 11(a) has low (inexpensive) test and 
rework; as a result, 9 of the 11 possible locations 
for tests are present (i.e., have fault coverages 
above the threshold for testing).  Because rework 
is also inexpensive in case (a), rework is being 
done at all the actual test locations.  Case 11(b) 
has inexpensive testing (same as case 11(a)), but 
the rework is expensive.  As a result, 
significantly fewer rework opportunities are 
actually exercised.  Notice also that the optimum 
test locations (and fault coverages) change even 
though the characteristics of the testing are the 
same due to the inclusion or exclusion of rework 
possibilities. Figure 12 shows the same test costs 
as 11(a) and (b), but no rework is allowed – the 
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Figure 10: A general process flow with all possible TDR operations. 

optimum test locations and fault coverages again 
differ from cases 11(a) and 11(b). Case 11(c) has 
expensive test and expensive rework.  As a 
result, only 3 or 11 possible test locations are 
used (Test 20, 23 and 24 only), however, rework 
is included with all three of these tests. 
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Figure 11: Computed optimum feature parameter values for TDR operation
Various fixed test and rework costs used in (1) and
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test operations (Cft= $1 and no rework). 
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Table 5: Characteristics of and inputs to the 
steps in process flow in Figure 10. 

step costin ($) yieldin cost ($) yield 
1 41 0.91 21.1 0.95 
2 62.1 0.92 12.3 0.88 
3   14 0.89 
4 60 0.36 23.8 0.94 
6   45 0.96 
7   11.3 0.86 
8   33.8 0.92 
9 37 0.42 13 0.90 
10   15 0.92 
11 9 0.95 60 0.95 
12   78 0.91 
13 75 0.96 54 0.94 
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                              (c): Cft= $50 and Cfr= $100  

s in the process flow shown in Figure 10.  
 (2) assumed. 

mization using RCGAs for the 
 in Figure 10 takes less than 3000 

13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation Number (N)

Cft= $50 and Cfr= $100

t= $1 and no rework

Cft= $1 and Cfr= $1

Cft= $1 and Cfr= $100

3: Optimization of yielded cost in 
3 for various level of fixed cost of test 

and rework operations. 



seconds for 100 generations, thus making it an 
attractive option for complex electronic systems.  

6. Summary 
     This paper describes a framework for the 
optimization of Test/Diagnosis/Rework (TDR) 
location(s) and characteristics in an electronic 
system manufacturing processes. A new search 
algorithm is developed and used to analyze 
complex process flows and to obtain values of a 
multi-variable function with a stream of feature 
parameters included. An optimization modeling 
system with Real-Coded Genetic Algorithms 
(RCGAs) integrated has been developed to 
optimize critical parameters and possible TDR 
locations for general process flows. The 
methodology developed and demonstrated in this 
paper guides the placement of TDR operations in 
practical manufacturing processes.  The ability to 
optimize the TDR operations can also be used as 
the feedback to DFT of the electronic systems 
showing which portion should be redesigned to 
accommodate the testing for a higher level of 
fault coverage and where there is less need for 
test to decrease the cost of products.  
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