
Proceedings of the International Test Conference, October 2003

Optimization of Test/Diagnosis/Rework Location(s) and Characteristics in
Electronic Systems Assembly Using Real-Coded Genetic Algorithms

Zhen Shi and Peter Sandborn

CALCE Electronic Products and Systems Center

University of Maryland
College Park, MD 20742

Abstract

This paper presents a framework for
optimizing the location(s) and characteristics
(fault coverage/test cost, rework success
rate/rework cost) of Test/Diagnosis/Rework
(TDR) operations in the assembly process for
electronic systems. A new search algorithm
called Waiting Sequence Search (WSS) is
applied to traverse a general process flow in
order to perform the cumulative calculation of a
yielded cost objective function. Real-Coded
Genetic Algorithms (RCGAs) are used to
perform a multi-variable optimization that
minimizes yielded cost. Several simple cases are
analyzed for validation and a general complex
process flow is used to demonstrate the
applicability of the algorithm.

1. Introduction
 Performing trade-offs of where in an
assembly process to test and what level of test,
diagnosis and rework to perform are key to
optimizing the cost and yield of an electronic
system’s assembly. The level of testing,
diagnosis and rework performed is defined by
the following feature parameter combinations:
fault coverage/test cost, diagnosis success
rate/diagnosis cost, and rework success
rate/rework cost.
 Previous research efforts have treated the
economics of test for electronic systems. Test
economics modeling and methodology
development ranges from classical relations
between fault coverage and yield [1], to the
development of economic models for analyzing
the financial aspects of test investments [2] and
the tradeoffs associated with design for test [3].
Many modeling efforts have focused on the
development of test step models for inclusion in
process flow1 based cost analyses, e.g., [4]-[8].

1 A process flow is a set of process steps in an application-
specific sequence.

These models vary in complexity, but in general
they take incoming costs and yields (from
upstream process steps) and determine the cost
and yield of the product after testing to specified
fault coverage has been performed. In most
cases, some type of diagnosis and rework can
also be modeled. Persons involved with
modeling the economics of a product’s
manufacture can use these models within the
larger manufacturing process flows.
 Previous efforts using Test/Diagnosis/ Rework
(TDR) models have been confined to evaluating
the impacts on product manufacturing when the
locations of the test operations (relative to the
manufacturing process steps) are manually
chosen. Optimization of the feature parameter
combinations of testing concurrent with a search
to determine the optimum location(s) for TDR
operations in a process is not known to have
been addressed in previous work. The target of
this paper is to address the following questions:

• How much fault coverage should be
required?

• Where (in a process) do I put the test
locations?

• When do I need to do the rework?
• How many rework attempts should be

made?

 The trade-off process has the purpose of
making the best choice between various possible
versions of tests and reworks, and to suggest the
values of feature parameters of testing in order to
minimize an objective function associated with
the process flow. To achieve the goal, the
following three items have been investigated:

1. Computations of a single TDR operation.
2. A searching algorithm to traverse all process
steps in a general process flow.
3. Multi-variable optimization using Real-
Coded Genetic Algorithms (RCGAs).

2. The Optimization Method
 The framework for optimizing the
implementation of TDRs in a process flow is
shown in Figure 1. In the model, the process
flow for manufacture or assembly of the
electronic system is first generated. Then
candidate TDR operations are inserted into the
process flow in all possible locations, i.e.,
between all process steps as an initial guess (if
the TDR operations can be inserted according to
specific experiences the optimization will be
more efficient). Starting with the process flow
and the initial guess of TDR operation locations,
a pre-analysis is executed to sort similar process
steps and merge branches to decrease complexity
of process flow. A new search algorithm (see
Section 4) is applied to traverse the entire
process to perform the cumulative calculation of
the objective function (yielded cost). RCGAs are
used to perform a multi-variable optimization
that minimizes yielded cost.
 The remainder of the paper is organized as
follows: Section 3 reviews the cost model used
for the computations of a single TDR operation
in the process flow. Section 4 proposes a new
graph-based search method, named “Waiting
Sequential Search”, which is applied to general
process flows in order to search all the step
nodes in the graphical representation and derive
cumulative objective function. In Section 5,
RCGAs are used to implement the optimization
of the TDR operations and the parameters
associated with them in the process flow. Test
cases are also provided in Section 5 to verify and
demonstrate the applicability of the model.

3. The Test/Diagnosis/Rework Model
 To involve all the effects of the feature
parameters on a general process flow and how
they relate to each other, a comprehensive model
was developed by Trichy et al. [7]. This model
provides a detailed formulation of the feature
parameters for a single TDR operation. Figure 2
shows the content of the model and detailed
formulations are given in [7]2.
 This model provides the accurate computation
of the feature parameters: Cout and Yout, etc. for a
single TDR operation in a process flow in which

2 Note, the following typographical errors should be
corrected in [7]: In (2) and (3), the maximum of the
summation should be n-1 instead of n, and (4a) can be used
for either definition of fp with changed to . In

(13), the subscript of N
1ndN

+ nd1N
r should be i-1 instead of i when i>0.

several variables—Ctest and Crew are defined as
the constants. For real processes Ctest is not a
constant and instead is related to the fault
coverage of the test. The rework yield (rework
success rate) is also not a constant. It depends on
the specific rework actions taken. In practice the
rework operation may cause additional defects to
be inserted in the product, [9]. For use in this
work, the model in [7] is extended by defining
general forms of the relationships among the
feature parameters, e.g., the costs of test and
rework in terms of fault coverage and rework
yield respectively.

Generation of
Process Flow

 Placement of Test/
Diagnosis/Rework

Package

Pre-Analysis of Process
Flow

Searching in the Graph

Objective Function

RCGAs Optimization

Robust Analysis

Figure 1: The framework for optimization of TDR

operation location(s) and characteristics in a
general process flow.

 A relationship between the cost of test
(proportional to test time or number of tests) and
fault coverage has been suggested by Goel [10].
Empirical data shows that the test process can be
divided in two phases. A relatively small subset
of TI (number of tests in Phase I see Figure 3) of
the total set of tests provides a fault coverage
ranging from 65% to 85% for most
combinational logic circuits [10]. For Phase II of
the test generation, the number of additional tests
required is approximately a linear function of the
number of untested faults remaining at the end of
Phase I. Unlike Phase I, in Phase II each
generated test tends to detect fewer faults than
the one before it and the average cost per
detected fault increases.

 2

Test
(Ctest , fc , fp)

Defects
(Ybeforetest)

Defects
(Yaftertest)

R
ew

or
ke

d

Repairable (Nr)

To be diagnosed (Nd)

Scrap (Ns1)

Diagnosis
(fd, Cdiag)

No Fault
Found

Ngout

Nrout
Rework

(fr, Crew,Yrew)

Nd1

Scrap (Ns2)

Cin, Yin, Nin Cout, Yout, NoutTest
(Ctest , fc , fp)

Defects
(Ybeforetest)

Defects
(Yaftertest)

R
ew

or
ke

d

Repairable (Nr)

To be diagnosed (Nd)

Scrap (Ns1)

Diagnosis
(fd, Cdiag)

No Fault
Found

Ngout

Nrout
Rework

(fr, Crew,Yrew)

Nd1

Scrap (Ns2)

Cin, Yin, Nin Cout, Yout, Nout

Figure 2: Organization of the Test/Diagnosis/Rework (TDR) operation, [7].

 For the purpose of simplifying the
relationship, an exponential function can be used
to approximately simulate Phase I and a linear
function in Phase П on the assumption that Phase
II could not reach a full coverage (100% of fault
coverage) in practical testing. Assuming that the
test cost is proportional to the number of tests, a
relationship between test cost and fault coverage
can be derived,

1) (0,f,C]r)fln(1[bpC cfttctttest ∈+−−= (1)

where pt is the cost coefficient; bt is the
coefficient of test characteristic, rt is the fault
ratio, fc is the fault coverage of test, Cft is the
fixed cost of test3. Figure 4 shows a plot of (1)
using the values in Table 1.

3

t
c

 There is similar relationship between rework
yield (yr) and rework cost (Crew) for the first
rework attempt,

T
es

t C
os

t (
C

te
st
)

Fault Coverage (fc)

Figure 4: Example relationship between the test
cost and fault coverage.

Linear Segment

F0 Phase I Phase II

T0TI

Iat/T
0eF −

 Number of Tests (t)

N
um

be
r

of
 U

nd
et

ec
te

d
Fa

ul
ts

Figure 3: Typical curve of untested faults
versus the number of tests, [10].

1) (0,y,C]r)yln(1[bpC rfrrrrrrew ∈+−−= (2)

 An alternative model for calculating the
rework cost has been proposed in [8], which
relates Crew with the cost of rework equipment
and rework time.
 Functional relationships between fault
coverage and test cost, and rework yield and
rework cost obviously depend on the type of
system being considered. The relationships in (1)
and (2) were used for the remaining work in this
paper as examples only. The methodology that
is the subject of this paper, will work
successfully with alternative models.
 After the single TDR operation is resolved,
the next issue is to cumulatively compute the
objective function of feature parameters of a
general process flow that includes multiple TDR
operations. For the purpose of derivation of the
objective function, search algorithms are needed

Table 1: Example values of factors in (1) and (2).

pt bt rt Cft pr br rr Cfr

0.02 -288 8.2 1 0.02 -300 10 1

 Cft accounts for fixed costs associated with testing, i.e.,
here is a minimum fixed cost for having even a small fault
overage.

to traverse the process flow with the computation
performed according to the sequence among
process steps.

3

4. Process Flow Search Algorithm
 Based on the analysis of the TDR model in
Section 3, we know how to compute the feature
parameters of a single test step. A general
process flow may, however, have many different
(possibly independent) TDR activities located
within it. The next issue to be addressed is how
to obtain the objective function (yielded cost,
i.e., cost divided by yield) for an entire general
process flow. Graphs are useful in representing
the process flow, i.e., complex systems involving
binary relationships among process steps [11].

4.1 Graphical representation of a process flow
 First, we review the basic graph notations
that are used in this paper. A graph consists of
a set of nodes and a set of edges ,

. Here denotes the entire process
flow, denotes the process steps and an
edge denotes the directed flow
between two adjacent process steps. The degree
of a node is the number of the neighbors adjacent
to it. We write when is in a
directed graph (DIGRAPH) [11,12]. We
define PRED(X) as the set of all predecessors
(process steps preceding X) of node X, and

as the set of successors (process steps
after X) of X. if , then
and . The indegree of a node
X is the cardinality of and the
outdegree of a node X is the cardinality of

. The graphical representation of an
example complex process flow is shown in
Figure 5.

G
V E

>=< EV,G G
V

EYX, >∈<

YX → EYX, >∈<

SUCC(X)
YX → PRED(Y)X ∈

SUCC(X)Y ∈ id(v)
PRED(X)

od(v)
SUCC(X)

4.2 Definitions of types of vertices (process
steps)
 From the analysis of a generic process flow,
four types of basic steps have been identified.
The process steps can be defined in the following
ways:
• Start Step, , 0id(v) and 1od(v) ==
There are no inputs to the Start Step and just one
output from it. There may be multiple Start
Steps in a complex process flow.
• Sequence Step, 1id(v) and 1od(v) ==
There is one input and one output for a sequence
step. Sequence Steps are the most common type
of step in process flows for electronic systems.
• Cross Step, 1id(v) and 1od(v) ≥=
There are multiple inputs and just one output
associated with this kind of step. The complexity

of the problem is significantly increased by each
Cross Step in the process flow.
• End Step, 1id(v) and 0od(v) ≥=
An End Step represents the end of the process
flow, which merges all the branches to one. The
objective function of the process flow is derived
from an End Step. There may only be one End
Step in a process flow.

4.3 Waiting Sequential Search (WSS)

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22
27

42
45

47

9 8

10

Figure 5: Example graphical representation

 of a complex process flow.

 To derive the objective function of a process
flow, every process step needs to be searched in
order to perform the cumulative computation.
Significant previous work on graph-based search
algorithms exists, e.g., [13,14]. Several
algorithms have been applied to resolve search
problems similar to the one posed here, [11,12].
As to the graph-based representation of our
process flows, there are several specific features
that make it attractive to propose a new search
algorithm to perform an efficient search in the
process flow.
 From the Figure 5, the following features of
the general complex process flow can be
observed:
• The 1od(v) ≤ is always true for all the

vertices (process steps) in the process flow;
• There are sequential search requests for the

graph, i.e., only when all the predecessors
of have been visited, then

could be visited.
PRED(Y) v(Y)
v(Y)

 WSS begins from the lowest-numbered vertex
that belongs to a Start Step then proceeds to
search the next step. By checking the type of the
successor, the algorithm decides to continue to
search to the next Sequence Step or wait at a
Cross or End steps. After moving to the next
step, the corresponding computation of feature
parameters of the previous step is performed and
the outcome is stored in a data table in which all
the property information associated with process
steps is recorded. If Cross or End types of steps

 4

are encountered, the visitation status of all
predecessors will be checked. If all the
predecessors have been checked, the searching
continues, if not, the search begins from another
Start Step type of vertex until the last Start Step
vertex is visited. The algorithm requires that the
searching of the next step continue only after all
the branches of the present step have been
visited. There are waiting actions for the
sequential search based on the characteristics of
the process flow. The searching process for the
complex process flow example shown in Figure
5 using WSS is described below:

1. First, begin from the lowest number of Start
Steps (2), (2) → (6), check whether all the
other branches have been searched, compute
then wait;

2. (10) → (8), check the other branches and
wait;

3. (25) → (14), wait;
4. (27) → (22), wait;
5. (29) → (7), wait;
6. (33) → (6), wait;
7. (42) → (45) → (47) → (9), wait;
8. (44) → (4) → (7) → (15) → (6) → (14),

wait;
9. (53) → (70), wait;
10. (66) → (70) → (21) → (22) → (14) → (9)
→ (8), (8) is an End Step, all the branches
have met and the process ends.

4.4 Multi-variable optimization function
 The objective of optimizing TDR location(s)
and characteristics is to minimize the yielded
cost of the entire process flow [15]. The
objective function in which feature parameters of
all possible TDR operations are considered can
be derived from sequential cumulative
computation from the Start Steps to the End
Step. When the WSS algorithm traverses the
entire process flow, a cumulative function is
computed to be used as the objective function
that needs to be minimized in the optimization.
The optimization problem becomes:

∑
=

∈

n

1i
m,2,1YXx

)xx(xCmin
iii

L (3)

 Complex process flows in electronic systems
assembly with hundreds of process steps are not
uncommon. A general optimization of such a
process flow requires an equally large stream of
TDR operations resulting in several hundred of
variables to be optimized for the trade-off
analysis. Traditional Genetic Algorithms (GAs)
use the binary representation that evenly
discretizes a real variable space. Although
binary-coded GAs (BCGAs) have been
successfully applied to a wide range of
optimization problems, they suffer from the
disadvantage that when they are applied to the
real-world problems involving a large number of
real variables the string encoding the variables
have a large string length [16,17] (because the
binary substrings representing each parameter
with the desired precision are concatenated to

where,
m = number of feature parameters to be

optimized;
n = total number of process steps with all

possible TDR operations included;
CY = yielded cost of the process flow,

cumulative cost divided by final yield.

 In the optimization, first the TDR operations
would be placed in all possible locations or be
chosen according to expert suggestions. The fault
coverage (), rework yield () and rework
attempts for the i

icf
irY

th TDR operation need to be
optimized in order to minimize the total yielded
cost of the process flow. For example, for the
complex process flow in Figure 5, there are 22
(including the one location after the End Step-8)
possible TDR operation locations following each
of the process steps if there were no specific
locations constraints as to where a TDR
operation could not be placed provided by the
user. The objective function can be written as
(4), if just fault converge and rework yield of the
TDR operations are to be optimized,

[0,1]X,)Y(fCmin
22

1i
r,cYXY,f ii

iric

∈∑
=

∈
 (4)

In Section 5, Real-Coded Genetic Algorithms
(RCGAs) are applied to minimize the objective
function with feature parameters constrained to
practical ranges.

5. Optimization with Real-Coded
Genetic Algorithms (RCGAs)
 To optimize feature parameters of possible
TDR operations in order to find the global
optimum of yielded cost of the process flow,
genetic algorithms (GAs) are used. GAs are
stochastic, directed search algorithms that have
proved useful in finding global optima in both
static and dynamic environments [16]. GAs work
with large populations of candidate solutions that
are repeatedly subjected to selection pressure and
which undergo naturally occurring genetic
operations in the search for improved solutions.

 5

represent an individual). Another drawback of
the BCGAs applied to parameter optimization
problems in continuous domains comes from the
discrepancy between the binary representation
space and the actual problem space. A simple
solution to these problems is the use of the
floating-point representation of parameters
[18,19]. Using RCGAs, an individual is coded as
a vector of real numbers corresponding to the
variables and the string length reduces to the
number of variables.
 With RCGAs integrated, a process flow cost
optimization modeling system according to the
framework in Figure 1 has been developed to
determine the optimum placement and
characteristics of TDR operations in general
process flows. The system results in suggestions
of where the TDR operations should be inserted
and not inserted, and what the optimal values of
feature parameters of testing and rework should
be based on the optimization analysis of the
objective function. The following subsections
provide the verification of the optimization
model compared with functional computations in
simple cases and a general process flow
demonstration.

5.1 Verification strategy
 To provide testing and demonstration of the
approach the following test cases are used:
 Test Case 1: Single-test case, fault coverage
varies and no rework is included;
 Test Case 2: One-TDR operation case in which
fault coverage and rework yield are allowed to
vary (a maximum of one rework attempt
assumed);
 Test Case 3: A general process flow case with
multiple TDR operations and variable fault
coverages and rework yields (a maximum of one
rework attempt assumed).
 Test Cases 1 and 2 are trivial and used to
validate the optimization model by comparison
with hand calculations of the yielded cost
associated with the process flow. The cases are
categorized into high-yield and low-yield inputs
in order to reflect the impacts of input yield on
the optimum. Test Case 3 demonstrates the value
of the optimization methodology on a case where
the optimum placement and characteristics of the
TDR operations is not obvious.

Table 2: Values of input parameters

5.2 Analysis of the simple cases
 For the simple process flow in Figure 6, the
optimum solution can be determined from a
simple step computation.

5.2.1 Single-test case (Test Case 1)

Step 1 Step 2
Cin

Yin C1
Y1

C2
Y2

Cout

Yout

Test

Ct
fc

Diag.Rew.

Cd
fd

Cr
fr

Figure 6: Simple two-step process flow with one
possible TDR operation inserted between them.

 If there is no test, the Cout and Yout are
computed using (5) and (6) respectively,

21inout CCCC ++= (5)

21inout YYYY = (6)

the final yielded cost can be derived as (7),
()

21in

21in

out

out
Y YYY

CCC
Y
C

C ++
== (7)

To evaluate this expression, the input parameters
in Table 2 are used. Substituting the inputs in
Table 2 into (7), the yielded cost is given as (8),

⎩
⎨
⎧

=
yield)-(high

yield)-(low
Y 41.64037

 266.017
C (8)

 If one test (no rework) operation is inserted
between Step 1 and Step 2 in Figure 6, the cost
and yield of the process flow is given by,

2f
1i

test1in
out C

)Y(Y
C)C(C

C
c

n

+
++

= (9)

2
)f(1

1inout Y)Y(YY c−= (10)
()

21in

f
1in2test1in

out

out
Y YYY

)Y(YCCCC
Y
CC

c+++
== (11)

substituting (1) into (11), the yielded cost of the
process flow becomes,

21in

f
1in2cttttft1in

Y YYY
)Y(YC)fln(1pb)prCC(C C

c+−+−++
=

(12)

 The equation can be rewritten as,
cf

cY CD)fBln(1AC +−+= (13)

where
21in

ttft1in

YYY
prCCC

A
−++

= ,
21in

tt

YYY
pb

B = ,

21in

2

YYY
CC = , 1inYYD = .

 Cin Yin C1 Y1 C2 Y2
High-Yield 21 0.97 10 0.98 7 0.93
Low-Yield 21 0.48 10 0.32 7 0.93

 6

Figure 7 plots (13) for the high-yield and low-
yield input cases respectively:
 1. For high-yield inputs, the yielded cost of the
one-test case primarily depends on the change of

 instead of the power of the fault
coverage (i.e., D in (13) is very small). The
minimum of yielded cost should be at the point
when the fault coverage is zero. This is to say
that the minimum yielded cost is for no test
inserted into the process flow, which makes
intuitive sense.

)fln(1 c−

 2. For low-yield inputs, we can see that (13)
clearly differs from the characteristic of curve of
yielded cost at high-yield inputs due to
increasing importance of the power of the fault coverage in determining the yielded cost of the
product resulting from the process flow. The
minimum of yielded cost should be between
$260 and $280 while the optimal fault coverage
falls into the range from 0.2 to 0.3.

Verification for high-yield inputs
 The results of the simple calculations above
are used to check the optimization methodology
developed in this paper. RCGAs are applied to
cases of high-yield and low-yield inputs
respectively. The specification of RCGAs is:

• Maximum generation= 20
• Population size= 50
• Mutation probability= 0.1
• Crossover probability= 0.95
• fT = 0.1 4

• Termination criteria = maximum generations

4 The threshold of fault coverage, fT , is defined as the
minimum non-zero fault coverage that we can purchase. For
any fault coverage below this threshold, there is considered
to be no test present (zero fault coverage and zero test cost).

The results from the optimization of yielded cost
in the single-test case at high-yield inputs are
shown in Figure 8.

Figure 7: Yielded cost of process flow versus

 fault coverage of test.

 In the first generation, the RCGAs have found
the optimized solution and show the best fitness
(the best value of objective function in one
population) of 41.64037 when the corresponding
fault coverage is set at a very small value. After
the evolution of 20 generations (termination
criteria), the algorithm converges to the same
value of yielded cost, which agrees with (8). In
the last generation, the fault coverage
optimization terminates at a small amount of
fault coverage (0.01495), lower than the
threshold for testing to be present. The test is
thus removed from the process flow based on the
optimization analysis from the RCGAs, which
coincides with the characteristics of Figure 7
(high-yield relation). In addition to validating the
optimal yielded cost of the process flow, RCGAs
are continuously convergent in searching for the
optimum, see Figure 8, and the mean (mean
value of objective function in one population) of
yielded cost levels out as well.

38

40

42

44

46

48

50

1 3 5 7 9 11 13 15 17 19
Number of Generations

Y
ie

ld
ed

 C
os

t

Mean

Best Fitness

Figure 8: Optimization of yielded cost in the single-

test case (Test Case 1) at the
 high-yield level.

Verification for low-yield inputs
 The specification of RCGAs used in the low-
yield input scenario is identical to that applied in
the high-yield case except the maximum number
of generations has been increased to 50. The
optimal solution of $265.1056 and a fault
coverage of 0.2707 that agrees with the
observation from Figure 7 (low-yield relation)
and it is smaller than the result of computed in
(8) in which there is no test present.

 7

5.2.2 One-TDR case (Test Case 2)
 In this test case, a complete TDR operation is
placed between the two process steps in Figure 6
in order to trace the effect of rework yield to
yielded cost as well as fault coverage.
Optimizations of one-TDR case with feature
parameters at high-yield and low-yield inputs are
given in Figure 9. The optimal values of fault
coverage and rework yield validate the same
conclusion that there is no need for a TDR
operation for high-yield inputs. In Table 3, the
optimum of yielded cost reaches $41.6403 (the
same value with the one in single-test case) when
the fault coverage convergent to a very small
amount (smaller than fT) and the rework yield
levels out without convergence in Figure 9, i.e.,
the rework is useless and should be removed for
the high-yield inputs.
 For the low-yield inputs, the rework operation
plays an important role on improving the yield of
process flow. Table 4 shows an optimal yielded
cost of $99.2924, which is much lower than the
value we have computed in Section 5.2.1 when
the no rework operation was considered.

Table 3: Results of RCGAs applied in the one-TDR
case at high-yield inputs (Test Case 2).

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

1 5 9 13 1 7 21 2 5 29 3 3 37 4 1 4 5 4 9

N um b er of G en erations

Fa
ul

t C
ov

er
ag

e

L ow -y ield In p u ts

H ig h -y ield In p u ts

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

1 4 7 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1 3 4 3 7 4 0 4 3 4 6 4 9

N u m b e r o f G e n e r a tio n s

R
ew

or
k

Y
ie

ld

L o w -y ie ld In p u ts

H ig h -y ie ld In p u ts

Figure 9: Optimization histories of feature
parameters in one-TDR case (Test Case 2).

Gen. Best
Fitness ($)

Mean ($) Fault
Coverage

Rework
Yield

1 44.26007 51.63859 0.055283 0.857406
2 44.26007 46.5915 0.055283 0.857406
3 44.26007 45.59374 0.055283 0.857406

M M M M M
48 41.6403 43.80089 0.015053 0.507313
49 41.6403 43.77923 0.007691 0.421582
50 41.6403 43.86956 0.015051 0.408746

Table 4: Results of RCGAs applied in the one-TDR
case at low-yield inputs (Test Case 2).

Gen. Best
Fitness ($)

Mean ($) Fault
Coverage

Rework
Yield

1 103.0425 184.1419 0.513008 0.973706
2 100.6619 129.323 0.7451 0.944974
3 100.5055 111.2269 0.738354 0.944896

M M M M M
48 99.29243 110.2903 0.643252 0.927038
49 99.29243 110.9406 0.643252 0.927038
50 99.29243 111.3758 0.643252 0.927038

 5.2.3 Optimization in complex process flow
(Test Case 3)

For use as a general demonstration, the
process flow shown in Figure 10 has been used
(the inputs of steps in Table 5). Possible TDR
locations have been marked. For the comparison
analysis, the projection of optimum fault
coverage and rework yield of all possible TDR
operations for various fixed cost values of test
and rework are shown in Figure 11 and 12.
Figure 13 presents the optimization of yielded
cost of the complex process flow, in which the
optimum of the objective function converges as
the number of generations of RCGAs increases.

Figure 11(a) has low (inexpensive) test and
rework; as a result, 9 of the 11 possible locations
for tests are present (i.e., have fault coverages
above the threshold for testing). Because rework
is also inexpensive in case (a), rework is being
done at all the actual test locations. Case 11(b)
has inexpensive testing (same as case 11(a)), but
the rework is expensive. As a result,
significantly fewer rework opportunities are
actually exercised. Notice also that the optimum
test locations (and fault coverages) change even
though the characteristics of the testing are the
same due to the inclusion or exclusion of rework
possibilities. Figure 12 shows the same test costs
as 11(a) and (b), but no rework is allowed – the

 8

1 TDR
(15) 2 TDR

(16) 3

4 TDR
(14) 6 TDR

(18) 7

11 TDR
(19) 12 TDR

(20)

TDR
(17)

TDR
(21)

8

9

TDR
(22)

TDR
(24) 10

13

TDR
(23)

Figure 10: A general process flow with all possible TDR operations.

optimum test locations and fault coverages again
differ from cases 11(a) and 11(b). Case 11(c) has
expensive test and expensive rework. As a
result, only 3 or 11 possible test locations are
used (Test 20, 23 and 24 only), however, rework
is included with all three of these tests.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

∗

No Test

∗

∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st1

4

Te
st1

5

Te
st1

6

Te
st1

7

Te
st1

8

Te
st1

9

Te
st2

0

Te
st2

1

Te
st2

2

Te
st2

3

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag

∗

No Test∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

R
ew

or
k2

2

R
ew

or
k2

3

R
ew

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

∗ ∗

No Test∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

No Test∗

∗

No Rework

 (a): Cft= $1 and Cfr= $1 (b): Cft= $1 and Cfr= $100

Figure 11: Computed optimum feature parameter values for TDR operation
Various fixed test and rework costs used in (1) and

 The opti
process flow

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 7

Y
iel

de
d

Co
st

 ($
)

Cf

Figure 1
Test Case

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st1

4

Te
st1

5

Te
st1

6

Te
st1

7

Te
st1

8

Te
st1

9

Te
st2

0

Te
st2

1

Te
st2

2

Te
st2

3

Te
st2

4

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag

∗ ∗∗

∗ Removed

Figure 12: Computed optimum fault coverage of
test operations (Cft= $1 and no rework).

 9
Table 5: Characteristics of and inputs to the
steps in process flow in Figure 10.

step costin ($) yieldin cost ($) yield
1 41 0.91 21.1 0.95
2 62.1 0.92 12.3 0.88
3 14 0.89
4 60 0.36 23.8 0.94
6 45 0.96
7 11.3 0.86
8 33.8 0.92
9 37 0.42 13 0.90
10 15 0.92
11 9 0.95 60 0.95
12 78 0.91
13 75 0.96 54 0.94
Te
st2

4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st1

4

Te
st1

5

Te
st1

6

Te
st1

7

Te
st1

8

Te
st1

9

Te
st2

0

Te
st2

1

Te
st2

2

Te
st2

3

Te
st2

4

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag

No Test

∗∗ ∗ ∗ ∗ ∗ ∗∗

∗

R
ew

or
k2

2 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Re
w

or
k1

4

Re
w

or
k1

5

Re
w

or
k1

6

Re
w

or
k1

7

Re
w

or
k1

8

Re
w

or
k1

9

Re
w

or
k2

0

Re
w

or
k2

1

Re
w

or
k2

2

Re
w

or
k2

3

Re
w

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

No Test

∗∗ ∗ ∗ ∗ ∗ ∗∗

∗

 (c): Cft= $50 and Cfr= $100

s in the process flow shown in Figure 10.
 (2) assumed.

mization using RCGAs for the
 in Figure 10 takes less than 3000

13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation Number (N)

Cft= $50 and Cfr= $100

t= $1 and no rework

Cft= $1 and Cfr= $1

Cft= $1 and Cfr= $100

3: Optimization of yielded cost in
3 for various level of fixed cost of test

and rework operations.

seconds for 100 generations, thus making it an
attractive option for complex electronic systems.

6. Summary
 This paper describes a framework for the
optimization of Test/Diagnosis/Rework (TDR)
location(s) and characteristics in an electronic
system manufacturing processes. A new search
algorithm is developed and used to analyze
complex process flows and to obtain values of a
multi-variable function with a stream of feature
parameters included. An optimization modeling
system with Real-Coded Genetic Algorithms
(RCGAs) integrated has been developed to
optimize critical parameters and possible TDR
locations for general process flows. The
methodology developed and demonstrated in this
paper guides the placement of TDR operations in
practical manufacturing processes. The ability to
optimize the TDR operations can also be used as
the feedback to DFT of the electronic systems
showing which portion should be redesigned to
accommodate the testing for a higher level of
fault coverage and where there is less need for
test to decrease the cost of products.

References
1. T. W. Williams and N. C. Brown, "Defect
Level as a Function of Fault Coverage," IEEE
Trans. on Comp., vol. C-30, no. 12, pp. 987-988,
December 1981.
2. E. H. Volkerink, A. Khoche, L. A. Kamas, J.
Revoir, and H. G. Kerkhoff, "Tackling Test
Trade-offs from Design, Manufacturing to
Market Using Economic Modeling," Proc. of Int.
Test Conference, pp. 1098-1107, Nov. 2001.
3. P. K. Nag, A. Gattiker, S. Wei, R. D.
Blanton, and W. Maly, “Modeling the
Economics of Testing: A DFT Perspective,”
IEEE Design & Test of Comp., vol. 19, pp. 29-
41, Jan/Feb 2002.
4. C. Dislis, J. H. Dick, I. D. Dear, I. N. Azu,
and A. P. Ambler, Economics modeling for the
determination of test strategies for complex
VLSI boards, Proc. of the Int. Test Conf., pp.
210-217, 1993.
5. M. Tegethoff, and T. Chen, “Defects, fault
coverage, yield and cost, in board
manufacturing,” Proc. of the Int. Test Conf., pp.
539-547, 1994.
6. M. Abadir, A. Parikh, L. Bal, P. Sandborn,
and C. Murphy, “High level test economics
advisor,” Journal of Electronic Testing: Theory
and Applications, vol. 5, no. 2&3, pp. 195-206,
1994.

7. T. Trichy, P. Sandborn, R. Raghavan, and S.
Sahasrabudhe, “A New Test/Diagnosis/Rework
Model for Use in Technical Cost Modeling of
Electronic Systems Assembly,” Proc. of Int. Test
Conf., pp. 1108-1117, 2001.
8. M. Driels and J. S. Klegka, “Analysis of
Alternative Rework Strategies for Printed Wiring
Assembly Manufacturing Systems,” IEEE Trans.
on Components, Hybrids and Manufacturing
Tech., vol. 14, pp. 637-644, Sept. 1991.
9. B. Davis, The Economics of Automatic
Testing, McGraw-Hill Book Company, 1994.
10. P. Goel, “Test Generation costs analysis and
projections,” Proc. of Design Automation
Conference, pp. 77-84, 1980.
11. N. Rao, “On Parallel Algorithms for Single-
Fault Diagnosis in Fault Propagation Graph
Systems,” IEEE Trans. on Parallel and
Distributed Sys., vol. 7, pp. 1217-1223, Dec.
1996.
12. K. Choi and A. Chatterjee, “Efficient
Instruction-level Optimization Methodology for
Low-Power Embedded Systems,” Proc. of the
14th Int. Symposium on System Synthesis, pp.
147-152, 2001.
13. G. Chartrand and O. R. Oellermann, Applied
and Algorithmic Graph Theory, McGraw-Hill,
Inc., 1993.
14. R.E. Tarjan, “Depth-First Search and Linear
Graph Algorithms,” SIAM J. Computing, vol. 1,
no.2, pp.146-160, 1972.
15. D. Becker and P. Sandborn, “One the Use of
Yielded cost in Modeling Electronic Assembly
Processes,” IEEE Trans. on Electronics
Packaging Manufacturing, vol. 24, pp. 195-202,
July 2001.
16. R. L. Haupt, and S. E. Haupt, Practical
Genetic Algorithms, Wiley, 1998.
17. A. Oyama, S. Obayashi, and K. Nakahashi,
“Wing Design Using Real-coded Adaptive
Range Genetic Algorithm,” Proceedings of IEEE
Int. Conf. on Systems, Man, and Cybernetics,
vol. 4, pp. 475-480, 1999.
18. C. Z. Janikow and Z. Michalewicz, “An
Experimental Comparison of Binary and
Floating Point Representations in Genetic
Algorithms,” Proc. of the 4th Int. Conference on
Genetic Algorithms, pp. 31-36, 1991.
19. A. H. Wright, “Genetic Algorithms for Real
Parameter Optimization,” Foundations of
Genetic Algorithms, Morgan Kaufmann
Publishers, pp. 205-218, 1991.

 10

