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Long-term support of legacy electronic systems is challenging due to mismatches between the system 
support life and the procurement lives of the systems’ constituent components.  Legacy electronic systems 
that are used in safety, mission and infrastructure critical applications that must be supported for 20+ 
years are threatened with Diminishing Manufacturing Sources and Material Shortages (DMSMS)-type 
obsolescence, and their effective system support lives may be governed by existing non-replenishable 
inventories of spare parts.  This paper describes the development of the End of Maintenance (EOM) model, 
which uses a stochastic discrete-event simulation that follows the life history of the population of parts in a 
system using time-to-failure distributions and other forecasted demands. The model determines the support 
life of the system based on existing inventories of spare parts and cards, and optionally harvesting parts 
from existing cards to extend the support life of the system.  The model includes: part inventory 
degradation, periodic inventory inspections, and design refresh planning for selected cards.   

A case study using a real legacy system comprised of 117,000 instances of 70 unique cards and 4.5 
million unique parts is presented.  The case study was used to evaluate the support life of a system with 
various future failure assumptions, including with and without the use of part harvesting.  The case study 
also includes sensitivity analyses for selected design refreshes to maximize potential system life-cycle 
capabilities, and optional design refresh planning required to sustain the system to a specific date.   
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1 Introduction 

 
The long-term sustainment of electronic systems in safety, mission and infrastructure critical 

applications is a challenging task for system supporters.  These types of systems must often be supported 

for 20+ years, have relatively low production volumes and are highly qualified and certified making system 

changes prohibitively expensive or impossible.  Example systems include avionics, industrial controls, 

power plant control systems, military systems, etc.  The support challenge for these systems includes the 

reliability of fielded components, required system availability, and supply chain and inventory 

management, all while trying to minimize system life-cycle costs.  Due to the nature of the electronic part 

market, safety, mission and infrastructure critical applications usually depend on the same Commercial Off 

The Shelf (COTS) components that high-volume consumer applications (e.g., cell phones, tablet 

computers) depend on. 
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The required use of COTS electronic components creates difficulties for many applications – notably 

they bind their users to volatile market trends where technology continuously evolves [1,2].  This rapid 

technological evolution quickly introduces “new and improved” components; however, this evolutionary 

process creates ripple effects that hinder legacy1 electronic system supporters [3].  Specifically, the 

emergence of electronic part obsolescence (DMSMS-type obsolescence) whereby a component is no longer 

procurable from its original manufacturer is a problem that plagues many legacy system supporters [3].  

DMSMS-type obsolescence is a significant contributor to systems becoming “sustainment-dominated;” 

sustainment-dominated systems are systems whose long-term sustainment (life-cycle) costs exceed their 

original procurement costs [4].  Sustainment-dominated systems become legacy systems when it becomes 

too expensive to replace them with newer systems.   

The focus for legacy electronic system supporters becomes minimizing system life-cycle cost while 

maximizing system support.  Part obsolescence often limits a system’s support life.  DMSMS-type 

obsolescence is typically resolved through a variety of reactive mitigation approaches.  Reactive 

approaches, although not a solution to the obsolescence problem, provide the supporter with ways to 

manage the problem tactically.  Reactive mitigation approaches include the use of alternate or substitute 

parts, aftermarket sources, lifetime buys, thermal uprating of parts, and emulated parts [5,6].  Proactive 

management includes part criticality analysis, critical spare part stocking, and maintenance planning [7].  

Strategic solutions that involve planning design refreshes based on forecasted part obsolescence also exist, 

e.g., [8,9], however, due to their potentially large expense and management/budget constraints, design 

refreshes may not be practical or possible for many systems.  The strategies focused on in this paper are 

those that use existing inventories of parts and reclamation to extend system support life based upon 

currently owned excess components and fielded legacy assemblies.   

One of the most widely used reactive approaches is a lifetime buy.  A lifetime buy (also known as a 

life-of-type buy) means purchasing enough parts when the part becomes obsolete to satisfy all foreseeable 

future demand.  As a result of lifetime buys, legacy system supporters are often left with potentially non-

replenishable inventories of parts to support the system into the future.  For many applications that have 

                                                 
1 Legacy systems are defined as fielded and operational systems for which no new system production or replacement is 
planned. 
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indefinite end of support dates,2 the question asked by supporters is “on what date will the system become 

unsupported?” 

 

1.1 End of Maintenance Definition.  A population of systems is composed of a set of system 

instances, e.g., a system instance could be one ground radar installation at one airport that is a member of a 

population of systems comprising all ground radar instances at all airports.  Systems are composed of a set 

of “cards”.  A card is an assembly composed of one or more parts, e.g., a card could be a printed circuit 

board, and the parts could be electronic chips. 

The Federal Aviation Administration (FAA) defines End of Maintenance (EOM) as “the moment a site 

requisition cannot be replenished.  This stage change begins with the depletion of limited depot and site 

spares quantities, followed by service degradation (i.e., loss of redundancy) and ultimately loss of system 

operations” [10].  The last portion of the FAA's definition (loss of system operations) is what the model 

described in this paper defines as the EOM date for the system.  In our model, the EOM date is defined as 

“the earliest date that all available inventories fail to support the demand for one or more specific parts 

resulting in the loss of system operation.”  An EOM event is defined for a population of systems but is 

caused by a specific part on a specific card. 

 Additionally, the FAA [10] defines End of Repair (EOR) as “when hardware product support is no 

longer available by any means or is cost-prohibitive.”  In this paper, the EOR date is defined as “the date 

that the last repair or manufacturing action associated with a part can be successfully performed.”  EOR 

events are part specific if all cards can draw from all inventories (no inventory segregation) and EOR 

events may be part and card specific if specific cards can only draw parts from specific inventories.   

 

1.2 Demand Forecasting.  Demand forecasting is an important piece of inventory management and 

plays a significant role in electronic systems sustainment modeling (including EOM modeling).  Demand is 

                                                 
2 This is a very common situation for military and civil infrastructure systems for which there is effectively no end of 
support date, i.e., “ageless systems” (or end of support dates are regularly extended).  For example, consider air traffic 
control systems, while replacement of these types of aging systems has been proposed, the date on which the actual 
replacement will occur is unclear and depends more on economic and political pressures than system realities.  In some 
cases the type of analysis described in this paper is a necessary step in making a business case to replace legacy 
systems. 
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composed of part needs to support future manufacturing of new system instances and part needs to support 

maintaining existing systems in the field.   

Several different approaches to demand forecasting have appeared in the literature.  First, a significant 

body of literature is devoted to “inventory optimization”.  Inventory optimization models determine the 

stock size that minimizes the system cost.  Most inventory optimization models are extensions of the basic 

Economic Order Quantity (EOQ) model [11], which minimizes the sum of the part holding and the order 

costs.   Inventory optimization models exist for both single and multi-echelon cases, for deterministic and 

stochastic demand, repairable and non-repairable systems, and a wide variety of other variations.  Several 

reviews of inventory optimization models exist, including [12,13].  While many inventory optimization 

models focus exclusively as production demand, there are also inventory optimization models that 

specifically treat the “spare parts” problem, e.g., [14-17].  In some cases [14] these approaches incorporate 

reliability models for determining spare part demand into the inventory optimization process.  

Fundamentally, inventory optimization models address how many parts should be held in inventory.    

The demand forecasting problem that needs to be addressed to evaluate EOMs is not an inventory 

optimization problem, i.e., in the EOM problem, the inventories of parts already exist and cost 

minimization is not the objective.  The objective is to accurately forecast part demands based on predicted 

or historical part-specific failure data and then use it to assess the length of the possible system support 

period.  A common problem among mission-critical systems is that their system lives are unknown until 

well into the sustainment period and the system must continue to be sustained until otherwise determined.  

Note, the EOM model does not model scheduled retirements. 

General sparing analysis depends on demand forecasting for maintenance of existing systems.  The 

irregular nature of spares demand (i.e., some time periods have zero demand and others do not), makes the 

number of spares difficult to predict.  Croston’s method [18] is the best known model for intermittent 

demand.  Croston’s method involves separate exponential smoothing forecasts on the size of a demand and 

the time period between demands.  Croston’s model, and numerous extensions to it [17,19], provide only 

point forecasts and are not based on a stochastic model.   Deterministic methods only provide point 

forecasts and cannot produce forecast distributions and demand prediction intervals.  A stochastic process 

allows for a multitude of probable and possible solutions based upon associated uncertainties, allowing for 
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system complexities to be explored.  Stochastic models incorporate the inherent randomness associated 

with spare parts demands, meaning that demands for a part arise only when that part actually fails.  The 

derivation for stochastic analysis of demand forecasting for service parts and approximate closed-form 

solutions have been proposed for constant part failure rates and constant part discard rates.  For example, 

the stochastic model developed in [19] determines part demands for given periods of time based on 

periodic product sales and failure information.  Eppen and Martin [20] investigate two cases considering 

stochastic demand size and lead times in a given period where the parameters of the distributions are 

known and unknown - when the parameters are unknown, they use a simple exponential smoothing model 

to generate estimates of demand in each period.  Sandmann and Bober [21] fit real failure data to suitable 

stochastic models using Maximum Likelihood Estimation (MLE) and use it to estimate propose stock 

control policies. 

Unfortunately, the stochastic models mentioned in the previous paragraph only forecast part demands 

considering one part type during their analysis.  Real systems contain hundreds (maybe thousands) of 

unique parts where each part could be characterized by a different failure distribution and by different 

distribution parameters.3  The objective is not only to forecast multiple part demands stochastically and 

simultaneously, but to track the system support life information (part failures and spares inventory 

depletion) over time as the forecasted part demands occur as 'events' that change the system.  The ability to 

forecast individual part demands is included in the example stochastic models mentioned above, but the 

manner and organization of how this process is carried out (i.e., the sequence of failures in time) is also of 

importance and it is not accommodated in [19] and [20].   

In order to capture the sequence of part failures in time for large numbers of unique parts, the model 

described in this paper uses a discrete event simulator to follow the life history of a population of parts and 

cards.4  We simulate an entire system support lifetime through the stochastic process of forecasting many 

part demands (a timeline that progresses through part demands) simultaneously while retaining the ability 

to track at any instant during the simulation what particular event is taking place (exactly what part fails 

and when the failure occurs).  Note, electronic parts (piece-parts, e.g., chips) are assumed to be non-

                                                 
3 It is also possible that the same part appearing in different locations in the same system has different reliability 
characteristics. 
4 Alternative stochastic models that could be considered include Markov chain models and Petri nets. 
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repairable, so each part failure results in a part replacement event.  The next section describes the model, 

which is followed by a demonstration of the model using a detailed case study. 

 

2  End of Repair/End of Maintenance (EOR/EOM) Model 
 

The discrete event simulator described in this paper models the process of inventory depletion through 

system operation and support for legacy systems and tracks the end of repair and end of maintenance dates 

for the system.  The electronic systems hierarchy assumed in the model includes parts and cards defined in 

Section 1.1.  In real systems, maintenance activities are unique based on the component that has caused the 

system to fail, the detail and complexity of varying maintenance lengths and procedures, depending on the 

component are outside the scope of this work and are not considered in the EOM model.  As the model is a 

discrete-event simulation, it captures only an event, which encapsulates the entire logistics footprint (from 

failure to logistics, maintenance, test/check, repair/replace, and reintroduction into an operational state) and 

therefore, all piece-parts are "maintained" equally and instantaneously at the event in this model.  

The model tracks information regarding individual parts from introduction to the field, through failure 

and replacement, and possibly subsequent failures and replacements through the system support life until 

EOM (or end of support) occurs.  An example process flow for parts within an electronic system is shown 

in Fig. 1.   
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The model starts by sampling time-to-failure distributions of individual parts that are located on cards 

within the system.5  After all of the part demand dates are sampled within the system, the demand dates are 

sorted from earliest to latest on a part-by-part basis.6  The model then determines the earliest part demand 

that occurs in the system, moves to its date, and performs a change to the system (this type of change is 

dependent on the type of event that occurs).  After the change has been applied, the second earliest part 

demand is found, the model moves to its date, and the process continues.  The model continues until a part 

demand cannot be fulfilled by the existing inventories (i.e., inventory stock-out).   

The simulation begins at the analysis start date and the simulation time progresses until an End of 

Maintenance event occurs (where a part demand cannot be fulfilled by existing inventories that previously 

sustained it) --this constitutes a single simulated life history of the entire system.  In order to provide an 

accurate representation of the system support life considering part demand uncertainties, multiple system 

life histories are tracked (typically 500), which result in probability distributions of End of Maintenance 

dates and the identification of the parts/cards (and their associated likelihoods) that cause system support 

loss.   

 

                                                 
5 Note, at the start of the analysis the system has already been fielded for a substantial length of time and the parts 
currently in the systems are not “good as new.”  Therefore, sampling from the time-to-failure distributions begins prior 
to the analysis start date. 
6 A part is defined as a component specific to a particular card and retains its own card-specific unique properties (time-
to-failure distribution and quantity).  Each instance of a part on a card is treated individually (represented by its own 
forecasted part demand based on sampling from the part's time-to-failure distribution).   

 
Fig. 1  EOR/EOM part failure process flow (single life history). 
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occurs

6) Once harvested part 
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2.1 Part Demand Sampling.  Only parts that are obsolete at the analysis start date are considered in 

demand forecasting within the model; all the non-obsolete parts are assumed to be continuously procurable 

as needed.  The number of forecasted part demands is proportional to the total number of fielded part 

instances within the entire system because each part is considered unique within the model and tracked 

independently using discrete forecasted demands.  The part demands are sampled using Monte Carlo from 

probability distributions representing the reliability of the parts.  Often organizations supporting legacy 

systems are uncertain of the failure distributions the parts within their system exhibit, but they may have 

maintenance records of observed part failures.  If a sufficient number of failures have been observed the 

data can be fit to create a time-to-failure distribution (an example appears in the test case included in this 

paper).  When only a few failures exist and no other information is known, a uniform distribution can be 

generated with lower bound a and upper bound b for a particular part, 

 pSFF ODDa )(    (1)  

 a

N

N
aODD

b

T

f

pSA 












)(

 (2)  

where, 

FFD  date (in years) of the first failure 

SD date (in years) the part was fielded 

AD date (in years) of the start of analysis 

pO = operational hours per year 

fN = number of failures to date 

TN = total number of fielded parts within entire system. 

 

The upper boundary of the distribution, b, is dependent upon the ratio of failures to date (between the 

date the part was fielded and the start of the analysis) divided by the total number of fielded parts.  When 

the ratio,
T

f

N

N
 equals 1, the upper bound becomes the difference between the start of analysis and the date 

the parts were fielded.  Likewise, as 
T

f

N

N
 approaches 0 (no failures observed), the upper limit of the 
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distribution approaches ∞.  When 
T

f

N

N
approaches ∞ (a large number of failures relative to the population 

of fielded parts), the width of the distribution approaches zero, i.e., a = b.   

For cases when obsolete parts in the system have no prior failure history two situations are considered:  

1) best-case – assumes the part never fails, and 2) worst case - assumes immediate first failure just prior to 

the start of analysis.   

 

2.2  Determining EOR/EOM Information.  End of repair and end of maintenance events are recorded 

within every simulated life history of the system.  The information associated with each of these events is 

also recorded and analyzed at the end of the simulation.  The model has the ability to track multiple 

EOR/EOM events within a given system life history.  The EOR and EOM events are referred to as 

“ordered” events based on their chronological occurrences throughout a given system support lifetime.  The 

calculated EOR/EOM information that is analyzed is based on their chronological order of occurrences. 

The ith-ordered mean EOM time (organized by order of occurrence within a single life history) for a 

particular part-card combination is given by, 

 
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where, 

iM  = ith-ordered mean EOM time  

ijM = ith-ordered EOM time in the jth life history 

ijN  = number of occurrences as an ith-ordered EOM in the jth life history - either 1 (occurs) or 0 

(does not occur) 
 

k = number of life histories simulated. 
 

The corresponding EOM probability for the particular part-card combination causing the ith-ordered 

EOM is given by, 
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where, iP = ith-ordered EOM probability. 

The mean End of Repair times for particular part-card combinations and their associated probabilities 

are analyzed in the same manner based on the last successful repair action. 

The EOM event information can also be organized at the card-level (by card) rather than the system-

level (order of occurrence).  The associated means and probabilities are generated to provide probability 

distributions of end of maintenance dates on a card-basis rather than an ordering basis.  The card-level 

EOM information tracked was organized for first-ordered events associated with each card.  Therefore, the 

mean EOM time and corresponding probability for a particular part-card combination concerning its first 

EOM event is given by equations (3) and (4) with i = 1, respectively. 

The EOR/EOM calculated information is the same for card-level and system-level analysis, except that 

the organizational structures of both analyses are different.  The system-level analysis partitions events by 

order of their occurrences, while the card-level analysis partitions first ordered events by particular cards. 

 

2.3 Spare Card Inventories, Throwaway, Part Harvesting, and Degradation.  The model described 

so far draws from inventories as parts are needed, until the inventories are depleted.  The model also 

includes inventories of spare cards that can be accessed once the part inventories are depleted; potentially 

further extending the system support life.  In the event that a part demand cannot be satisfied for a 

particular card that has available spare cards to draw from, the existing card is thrown away and replaced 

with one of the available spare cards.  Spare cards, and their constituent parts, are assumed to be "good-as-

new".  The action of throwaway and replacement of an existing card means the removal and re-sampling of 

all of its part demands for all of its parts from their corresponding reliability distributions.   

There is an intermediate step that may optionally be performed before an existing card is thrown 

away—existing parts that have not failed may be harvested prior to the card's disposal (i.e., this is an 

obsolescence mitigation strategy commonly known as reclamation).  Another purpose for this study was to 

investigate the benefit gained from the implementation of harvesting policy to harvest usable parts off of 

previously discarded cards to be used later when new spares run out. 

The action of part harvesting removes non-failed parts from the discarded card and places them in a 

separate inventory of harvested parts.  When inventories of spare parts and spare cards are depleted, this 
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third inventory is then accessed and used until there are no more replacements available.  Generally, the 

physical removal of the part from the assembly will degrade or damage the part further (e.g., additional 

stress from mishandling, bent pins, etc.).   

This condition is accounted for in the model by calculating the fraction of remaining useful life for the 

ith harvested part from the jth card, ijL , given by, 

 
ii

Hi
iij tFD

tFD
HL




  (5) 

where, 

iH = preserved life fraction of ith part incurred from the physical action of harvesting (1 = no damage 

to the part from the harvesting process, 0 = all remaining life removed by the harvesting 
process) 

iFD = ith part forecasted demand date  

Ht = simulation time when the harvesting action occurs 

it simulation time when ith part was fielded ( it =0 for initial fielded parts)  

 

The numerator in the fraction of equation (5) represents the remaining part life as the difference 

between the forecasted part’s demand date and the simulation time at the time harvesting occurs.  The 

denominator represents the part's time-to-failure from the instant the part was fielded.  The remaining part 

life must be preserved as a fraction rather than a time-to-failure because it is likely the part will be used 

towards replacement on a different card where there may be discrepancies between the parts' reliabilities 

(i.e., they may be represented by different probability distributions or distribution parameters).  The 

remaining life fraction is then used to adjust future forecasted part demands used during part replacements 

when all other existing inventories are depleted.   

The adjusted forecasted demand of the ith part from the mth card (m may equal j, i.e., the harvested 

part may be replaced on the same type of card), imAFD , is then given by, 

  imijim FDLAFD   (6) 

where, 

imFD  ith part forecasted demand date from the mth card 
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Another possible issue impacting the number of parts available is degradation within inventories (an 

example could be finite shelf life for a part in inventory).  In discrete-event simulations, events can be 

described as anything that causes a change to the state of the system.  The model interprets inventory 

degradation as an event that can occur at any time.  The model distinguishes between part failures and part 

degradation as two different types of events, but executes their processes in a similar manner (see Fig. 2).   

First, the model generates the initial number of demands associated with each type of event included in 

the analysis.  Next, the model cycles through the possible types of events that can occur and finds the 

earliest date associated with each event type.  Some events may never occur during a system life history 

(i.e., no part degradation) in which case those events are ignored during the evaluation.  The model 

determines the earliest date among all event types and jumps ahead to that date, implements the appropriate 

changes to the system (dependent on the type of event), removes the date and event that just occurred, and 

resamples the distribution corresponding to the part (or inventory) that caused the current event.  

Afterwards, the concurrent event evaluation continues until the EOM is reached.   

Due to the nature of discrete-event simulation, the part inventory degradation event can be emulated 

through assignments of probability distributions representing the likelihood of a part degrading in the 

inventory in a given time period.  The forecasted degradation date for the ith part from the kth inventory 

ikFDD  is given by,  

 
Fig. 2 Discrete‐event simulation flow for multiple events. 
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  tDDFDD ikik   (7) 

where, 

ikDD  ith part forecasted degradation demand date from the kth inventory 

t  current simulation time (starting at t = 0). 

Upon reaching DDik, the model identifies that a single part has degraded (become unusable) within the 

inventory.  The degradation distribution of the part is then resampled and the next forecasted degradation 

date is calculated and the process continues until either the inventory of spares runs out or the EOM date is 

reached.   

The process described above identifies the moment that a part has degraded; however, the degraded 

part is not removed from the inventory at this time.  The degraded parts are discarded either at the next 

inspection event associated with the inventory or after an attempted use of the degraded part is made (i.e., 

the probability of pulling a degraded part or ‘good’ part from inventory).  For example, the probability at 

any given time that a degraded part is chosen from the inventory is represented by,  

  
ik

ik

NP

G
 (8) 

where, 

ikG = number of ith parts considered degraded from the kth inventory 

ikNP = number of ith parts remaining from the kth inventory. 

If 
ik

ik

NP

G
 equals 0, then none of the ith parts from the kth inventory are considered to be degraded.  

Conversely, when 
ik

ik

NP

G
 equals 1, then all of the ith parts from the kth inventory are considered to be 

degraded.  Randomly pulling a part from inventory can be represented by randomly choosing a number 

between 0 and 1 (RN).  If there are degraded parts in the inventory and a replacement part needs to be 

pulled, then a good part is pulled from inventory if RN  > 
ik

ik

NP

G
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or a degraded part is pulled from inventory, RN  < 
ik

ik

NP

G
.   

The quantities ( ikG , ikNP ) are updated after the part is drawn (whether good or degraded) and the 

simulation continues.  The degradation process flow is shown in Fig. 3. 

The process flow in Fig. 3 demonstrates the degradation for a single part within a single inventory.  In 

the event that multiple parts degrade, additional process flows are added in parallel and are associated with 

each part involved (each process flow is associated with a single part located in a specific inventory).  The 

EOM model allows for part degradation probability distributions to be defined for each part appearing in 

specific part inventories within the system. 

Additionally, the EOM model models periodic inventory inspections for all obsolete parts located in a 

given inventory.  In the event of an inventory inspection, a pre-specified quantity of each part is randomly 

drawn from inventory; any degraded parts drawn during inspection are immediately discarded and the fully 

functional parts may or may not be returned to the inventory after inspection occurs.  Inspections continue 

to occur periodically until either all the spares have been depleted from the inventory or EOM occurs. 

 
3  Test Case and Results 
 

To demonstrate the model, a test case was developed using an actual legacy electronic system.  The 

system used in this study is comprised of unique cards, each card containing unique parts, and observed 

 
Fig. 3 Part degradation in inventory (shelf‐life) process flow for a single part. 
 

Start Date Time

Degradation distributions 
from part within inventory 
sampled 

First degradation demand date 
arrives, part identified as 
degraded, part degradation 
distribution resampled

Second degradation demand 
date arrives, part identified as 
degraded, part degradation 
distribution resampled

Subsequent degradation 
occurs if system support 
life and inventory permits

Degraded parts removed via subsequent inventory 
inspections or after attempted use towards replacement
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part failure histories.  The objective of the test case is twofold: 1) to demonstrate the capability of the 

model, and 2) to observe the legacy system sustainment ramifications through different test scenarios (part 

harvesting and immediate first failures of non-failed parts).   

The case considered contains 117,000 system instances each consisting of 70 unique cards totaling 4.5 

million obsolete parts.  Each card has a unique number of fielded units and number of available spare cards 

to draw from.  The system was introduced in 1993, the EOM analysis begins on January 1, 2011, and 

system support is continuing for the foreseeable future.   

The legacy system was examined using five different management assumptions representing 'worst-

case' and 'best-case' scenarios (with regards to parts with no failure history) for the system and 

incorporating the use of part harvesting towards system sustainment.  The 'best-case' scenario assumes that 

parts with no previous failure history within the system never fail and are therefore not considered during 

EOM analysis.  This assumption may be valid depending on the nature of the system and when the system 

was introduced.  The 'worst-case' scenario assumes that parts with no previous failure history experience 

their first failure at the beginning of the analysis and their failure distributions are synthesized based on this 

assumption.  Each test case was tracked for 500 system life histories to construct probability distributions 

of EOM dates.  The analysis ignored parts that were not obsolete at the analysis start date and inventories 

of spare cards were included in all test cases and used before inventories of accumulated harvested parts 

were considered.  The following five test cases are considered: 

Run to the first EOM in the system: 

1. Best case – no harvesting 

2. Worst case – no harvesting 

3. Worst case – with harvesting 

Run until every card has reached its first EOM (or 2050 max): 

4. Worst case – no harvesting 

5. Worst case – with harvesting 

 
The first three test cases were analyzed until the first EOM date for the entire system was reached (i.e., 

the first instance that a part demand could not be fulfilled from available inventories).  Test cases 4 and 5 

sustain the system until one of two conditions was met: 1) until every card type within the system has 
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observed its first EOM date, or 2) until the year 2050 has been reached.  In test cases 4 and 5, the first 

condition was never met so the simulation ran to 2050 and recorded all the EOM events that occurred up to 

2050.  Test cases 4 and 5 were also ordered to organize EOM events and calculate associated means and 

probabilities on a card-level rather than system-level.  This means that probability distributions of EOM 

dates were analyzed for individual cards rather than as a representation of the entire system (by order of 

occurrence). 

 

3.1 Parts Containing Significant Failure Histories With Right Censored Failure Data.  A large 

number of failures have been observed to date for several specific parts (e.g., 3798-05 and 5004-02) in the 

example system.  For these parts, the time to failure distributions can be determined using Maximum 

Likelihood Estimation (MLE) to find the best fit to 2-parameter Weibull distributions while accounting for 

the surviving parts using life data analysis software (Weibull++®).7  The resulting failure distributions for 

these parts are shown in Figs. 4 and 5.  The two lines on each graph represent the fitted failure distributions 

with and without right-censoring.     

                                                 
7 The failure data is right censored because not all the fielded parts have failed to date.  Right censoring occurs in 
reliability testing when some of the units in the population survive the full test time period without failing. 
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Other obsolete parts included in the system had too few recorded failures to make MLE fitting 

practical and their failure distributions were therefore treated as uniform distributions created from 

historical failure data as described in equations (1) and (2).  Note, treatment of these parts using uniform 

distributions is only a default; if information is known about the time-to-failure distributions for these parts 

from other sources, e.g., qualification testing, it could have been used.     

 

3.2  No Failure of Non-failed Parts and No Harvesting (Test Case 1) Results.  The results for the 

first test case are shown in Fig. 6.  The mean time to the first EOM date for the system was 17.49 years 

(2028.49).  The left side of the figure shows a probability distribution of the first EOM dates for the system, 

which includes possible EOMs from all cards in the system.  On the basis of running 500 system life 

histories of the system, that the following conclusions can be drawn: 

 50% probability that at least one instance of the system will be unsupportable by 2028.52 

 
Fig. 4  Part number 3798‐05 failure distribution.  Both data sets are equal, one shows 10% 
unreliable, the other 100% unreliable (censored versus uncensored). 
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 ~100% (95.4%) probability of all instances of the system being supportable through the end 

of 2027 

 100% probability that at least one instance of the system will be unsupportable by 2029 

  

In this particular case, the EOM date for the system is very well defined, i.e., in nearly all (95.4%) of 

the life histories analyzed, the system will survive without an EOM through the end of 2027, but there is a 

100% probability that at least one instance of the system will be unsupportable by 2029.  The right side of 

Fig. 6 shows the cards that are the most probable causes of EOM and EOR events.  The system-level EOM 

distribution (left side of Fig. 6) corresponds to all observable EOMs (including parts 6763-24, 5004-02, 

4000-44, and 6006-51).  The part that is most likely to result in the first-ordered EOM is part 6763-24 from 

Card 63 (81.6%) with a mean EOM time of 17.5 calendar years.  This probability means that in 408 out of 

500 life histories, the 6763-24 parts from Card 63 caused the first EOM in the system. 

 
Fig. 5 Part number 5004‐02 failure distribution.  Both data sets are equal, one shows 10% 
unreliable, the other 100% unreliable (censored versus uncensored).   
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Fig. 6 System‐level EOM distribution (left), EOM (top right) and EOR (bottom right) results for Case 1.  

 
 

3.3  Immediate First Failure of Non-Failed Parts and No Harvesting (Test Case 2) Results.  The 

results for the second test case are shown in Fig. 7.  The mean time to the first EOM date for the system 

was approximately 17.51 years (2028.5).  The left side of the figure shows a probability distribution of the 

first EOM dates for the system.  The right side of Fig. 7 shows the tabulated results of the most probable 

causes of EOM and EOR events in the system.   

 

Fig. 7 System‐level EOM distribution (left), EOM (top right) and EOR (bottom right) results for Case 2.   
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The first End of Maintenance date does not decrease as a result of the ‘worst-case’ assumption for 

obsolete parts with no failure histories.  This signifies to the system supporter that, even in a worst case 

scenario, the non-failed parts are not at risk for causing significant (if any) differences in system-level 

EOM dates.8   

3.4  No Failure of Non-failed Parts and Harvesting (Test Case 3) Results.  The results for the third 

test case are shown in Fig. 8.  The mean time to the first EOM date for the system was approximately 17.8 

years (2028.8)—resulting in a quarter year gain in system sustainment due to the action of harvesting of 

parts. 

 

Fig. 8 System‐level EOM distribution (left), EOM (top right) and EOR (bottom right) results for Case 3. 

 
 
All the parts that cause the first EOM event when part harvesting is implemented also appear in 

previous cases 1 and 2.  One of the part-card combinations that caused the first EOM event in the previous 

case is now delayed.  Furthermore, when the difference in the mean is evaluated between cases 1 and 

casess 3, it is shown that the mean increase as a result of is statistically significant when compared to the 

coefficient of variation.   

 

                                                 
8 The coefficient of variation (COV) for Case 1 is 0.01—to determine statistically significant deviations 
from the mean, a number for comparisons must fall outside this range.  When the difference between the 
means of Case 1 and 2 are calculated, it is determined that, although small, there is statistical significance 
between the two Cases. 
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3.5  Immediate First Failure of Non-failed Parts and No Harvesting (Test Case 4) Results.  In this 

case the analysis ran until the year 2050, tracking all observed EOM events.  The EOM model can track 

specific cards throughout the system lifecycle detailing how the fielded cards were removed over time due 

to EOM events.   Each of the tracked cards shown in Fig. 9 become unsupportable (characteristic when all 

fielded cards are removed due to the failure to meet part demands) by specific calendar dates.  The card-

level EOM results for the fourth test case can be seen in Fig. 10.   

 

Fig. 9 Card‐level support tracking and loss. 

 
The left graphs in Fig. 10 show the card-level EOM probability distributions for specific cards in the 

system.  The table on the right side of Fig. 10 shows a list of the cards within the system that observed at 

least one EOM event up until the calendar date (2050) when the simulation was terminated.  It was shown 

that 41 out of the 70 cards in the system (22 cards are shown in Fig. 10) exhibited first EOM dates prior to 

2050 and probability distributions for each card that experienced EOM can be provided. 
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Fig. 10 Card‐level EOM distributions (left) and EOR/EOM results for Case 4 (right). 
 
 

 
3.6  No Failure of Non-failed Parts and Harvesting (Test Case 5) Results.  The results for this test 

case are shown in Fig. 11, the only difference between cases 4 and 5 is the inclusion of part harvesting.  

The case 5 results differ from case 4 in that 22 of the 70 cards in the system exhibited first EOM dates prior 

to 2050 without harvesting and 19 of the 70 cards exhibit a first EOM prior to 2050 when harvesting is 

used. 

Part harvesting allows for some card-level EOM dates to be delayed for significant periods of time in 

this example case.  This result depends on many factors including parts’ failure distributions and whether 

critical parts that cause card-level EOM events appear on multiple cards within the system.  However, the 
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action of harvesting parts may not significantly delay card-level EOM dates when faced with high failure 

rate parts (due to an excessive number of demands at a given time and lack of supply).   

By comparing Fig. 10 and Fig. 11, one can see the added benefit (or lack thereof) when harvesting is 

implemented.  Card 16 was selected in Figs. 10 and 11 to show that harvesting sometimes may not prove 

fruitful; in other cases, such as Card 4, Case 5increases the mean EOM date by 12 years compared to Case 

4. 

 

Fig. 11 Card‐level EOM distributions (left) and EOM results for Case 5 (right). 

 

 
3.7 Selective Card Refresh.    It may be possible to extend the EOM dates of systems by design 

refreshing selected cards.   A design refresh refers to the replacement of one or more obsolete parts with 
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non-obsolete parts, in order to keep the card sustainable.  The refresh of specific cards will extend the EOM 

date associated with the card (and may thereby possibly extend the system’s EOM date) and/or refreshing a 

card may allow the harvesting of parts (from the refreshed card) for supporting other cards that use the 

same parts.   

In this section, a sensitivity analysis is conducted for the previous test cases 1-3 to determine the 

additional system support life gained from selectively implementing a design refresh for individual cards in 

the system.  The completion dates for the individual card refreshes for each case were determined from 

their respective EOM date probability distributions (see Figs. 6-8).  The completion dates for the selective 

card refreshes are implemented to occur prior to the earliest EOM date observed for the respective test case 

(i.e., the earliest EOM date observed for case 1 was 2027.9, and the selective design refreshes for case 1 are 

assumed to be complete in 2027).  This assumption implements design refreshes at the latest possible 

time—resulting in less expensive (cost of money) design refreshes, and the possibility of refreshing 

additional obsolete parts that may become obsolete over the support life of the system.  The completion 

dates for the individual card refreshes for cases 1-3 are shown in Table 1.   

Table 1 Completion dates for implemented individual card refreshes 

Case # Individual Refreshed Cards Card Refresh Completion Date 

1 30, 41, 61, 63 2027 

2 30, 41, 57, 61, 63 2028 

3 All 2028.5 
 
The individual cards chosen for design refreshes for each test case were determined first by the 

identified cards that potentially caused the first EOM date for the system (for test cases 1 and 2).  

Additional cards were also chosen and tested individually when they were identified to cause the first EOM 

date for the system as a result of implemented individual card refreshes.  Selective design refreshes for case 

3 included testing all cards within the system, as harvested parts can potentially be used to support other 

cards in the system.  The results for each test case and their selected cards are seen in Figs. 12 through 14.  

The results shown include individual refreshes for which there was a statistical difference among the means 

between the individual card refresh first EOM dates and the first EOM date from each test case from Figs. 

6-8.  In order to determine whether or not there was any statistical difference among the means, a two 

sided-hypothesis test was performed using the mean EOM date when a selected design refresh was 
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introduced and the mean EOM date for the associated test case (best, worst, worst case including 

harvesting) where design refresh was not introduced. 

The two-sided hypothesis testing is given by,  

 H0: μDR =  μTC (9)

 H1: μDR ≠ μTC (10) 

where, 

H0 = null hypothesis 

H1 = alternate hypothesis 

μDR = population mean for a selected design refresh 

μTC = population mean for the associated test case (no design refresh). 

The EOM date probability distributions were assumed to approximate normal distributions based on 

the Central Limit Theorem, which states as the sample size becomes larger, the population frequency 

distribution approximates a normal distribution.  A confidence level of 95% (α = 0.05) was used for each 

investigated case, and the selected refreshes that were shown to be statistically different (able to reject H0) 

are shown in Figs. 12 through 14. 

 

 
Fig. 12 System support life gained from individual card refresh, case 1. 
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The results from case 1 show that there were four individual cards that had a statistically different 

mean system support life via design refresh compared to case 1.  The best candidate for design refresh was 

Card 63 granting a system extended life of 0.22 years. 

 

 
Fig. 13 System support life gained from individual card refresh, case 2. 
 
 

The results from case 2 show that there were three individual cards that had a statistically different 

mean system support life via design refresh compared to case 2.  The best candidate for design refresh was 

Card 63 granting a system extended life of 0.16 years. 
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Fig. 14 System support life gained from individual card refresh, case 3. 
 
 

The results from case 3 show that there were three individual cards that had a statistically different 

mean system support life via design refresh compared to case 3.  The best candidate for design refresh was 

Card 61 granting a system extended life of 0.19 years. 

 

3.8  Design Refresh Planning.   Design refreshes may also be performed on selected cards to ensure 

system sustainment to a specific date.  In this context, the EOM model assumes that a design refresh is 

completed for an individual card on the date that it is necessary (i.e., the first EOM date for that particular 

card) and records the completed date of the refresh and the identity of refreshed card.  The following 

analyses assume a maximum of one design refresh per type of card—all the obsolete parts on the refreshed 

card are removed and excluded from the analysis for all times after the refresh is completed.  The EOM 

model was used to determine design refresh plans to ensure system sustainment until the year 2050 for the 

first three test cases.  The refreshes during design refresh planning are assumed to be completed "just-in-

time" on the earliest EOM date associated with each type of card.9  This assumption implements design 

refreshes at the latest possible time—resulting in less expensive (cost of money) design refreshes, and 

allows for design refresh planning (design refresh as needed) rather than selectively entering design 

refreshes at specified dates.   

                                                 
9 This is the same as the “just in time refresh date” assumption made in general refresh planning, [8]. 
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The results from case 1 show that there were 10 individual cards generated in the design refresh plan to 

ensure system sustainment to the year 2050.  The probabilities indicate the likelihood that a given card 

would undergo a design refresh based on the number of system life histories that were simulated.  The 

design refresh plan and a probability distribution of completion dates for individual refreshed cards are 

shown in Fig. 15.     

 
Fig. 15 Design refresh plan (left) and completed refresh date distribution (right), case 1. 

 
 

The results from case 2 show that there were 39 individual cards generated in the design refresh plan to 

ensure system sustainment to the year 2050.  The design refresh plan is seen in Fig. 16.    The introduction 

of the immediate failure of obsolete parts with no failure histories led to the increase in the failure of the 

additional cards prior to 2050, requiring them to be design refreshed.   
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Fig. 16 Design refresh plan, case 2. 

 
The results from case 3 show that there were 22 individual cards generated in the design refresh plan to 

ensure system sustainment to the year 2050.  The design refresh plan and a probability distribution of 

completion dates for individual refreshed cards are shown in Fig. 17.  The implementation of part 

harvesting reduced the required design refresh plan for case 2 by 17 cards.   

Card ID Mean Refresh 
Completion Date

Probability Card ID Mean Refresh 
Completion Date

Probability

Card 4 2038.912 100.0% Card 64 2048.25 81.4%

Card 59 2033.677 100.0% Card 63 2033.489 100.0%

Card 14 2040.466 100.0% Card 61 2032.457 100.0%

Card 18 2033.599 100.0% Card 39 2030.75 100.0%

Card 50 2040.971 100.0% Card 31 2030.381 100.0%

Card 12 2032.647 100.0% Card 32 2030.402 100.0%

Card 41 2029.366 100.0% Card 54 2033.627 100.0%

Card 22 2033.541 100.0% Card 15 2037.023 100.0%

Card 21 2037.006 100.0% Card 57 2030.038 100.0%

Card 42 2029.573 100.0% Card 29 2030.146 100.0%

Card 48 2043.173 100.0% Card 30 2029.469 100.0%

Card 3 2035.692 100.0% Card 40 2030.255 100.0%

Card 25 2032.863 100.0% Card 20 2048.438 72.6%

Card 24 2035.141 100.0% Card 1 2042.682 100.0%

Card 49 2035.341 100.0% Card 19 2033.759 100.0%

Card 13 2029.627 100.0% Card 17 2034.596 100.0%

Card 55 2037.562 100.0% Card 16 2034.445 100.0%

Card 62 2034.602 100.0% Card 21 2039.545 100.0%
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Fig. 17 Design refresh plan (left) and completed refresh date distributions (right), case 3. 

 
 
3.9  Summary of Case Study Results.  The results from the case study scenarios used to demonstrate 

the methodology and capabilities of the EOM model are summarized in Table 2.    

Table 2 Case Study Summary 
Case(s)    Mean First EOM  First EOM 

Events by 2050 
EOM Extensions 
Possible Through 
Individual Card 

Refresh 

Design Refresh Plans 
Necessary to Ensure 
System Sustainment 

Through 2050 

1  Best‐case, no 
harvesting 

17.5 calendar 
years 

  0.22 calendar years 
(Card 63) 

10 individual card 
refreshes 

2 and 4  Worst‐case, no 
harvesting 

17.5 calendar 
years 

41 individual 
cards 

0.16 calendar years 
(Card 63) 

39 individual card 
refreshes 

3 and 5  Worst‐case, with 
part harvesting 

17.8 calendar 
years 

22 individual 
cards 

0.19 calendar years 
(Card 61) 

22 individual card 
refreshes 

 
 

 

 



Final Manuscript for Journal of Mechanical Design (MD-13-1076) November 11, 2013 

31 
 

The test case scenarios included results for an actual legacy electronic system using the harvesting of 

parts, immediate first failure assumption for no-failure obsolete parts, and system sustainment to a specified 

end of support date to track subsequent EOM events.  The model predicted that the electronic system used 

in the case study would be able to last between 17.5 and 17.8 years as shown in the third column of Table 

2.  The immediate first failure assumption for no-failure obsolete parts did not reduce the system support 

life capabilities meaning that non-failed parts would not be an issue for causing EOM.  The implementation 

of part harvesting extended the system support life by approximately 0.3 years.  Therefore, the activity of 

part harvesting for the case study system resulted in an extension of the overall support life of the system 

by approximately 2%.   

The EOM model was then used to track subsequent EOM events in order to sustain the electronic 

system to the year of 2050.  The model predicted that the system used for the case study would incur first 

EOM events as shown in the fourth column of Table 2.  In this test case, the implementation of harvesting 

led to an avoidance of 19 additional cards incurring EOM events by the year 2050—showing that there is 

part similarities among the cards within the electronic system, and that part harvesting is a significant 

mitigation strategy for delaying additional EOM events for systems whose cards have part similarities. 

The EOM model was also used to observe the effects of individual selected card refreshes on system 

sustainment.   The model predicted that the system used for the case study could extend its average first 

EOM date as shown in the fifth column of Table 2.  The extension of the system support life is most 

extended through the individual card refresh of the Card 63 when part harvesting is not considered.  This is 

due to the fact that Card 63 has a variety of components that have high demand rates (low reliabilities) 

caused by unique parts that fail frequently and do not appear on other assemblies.  However, the system 

support life is most extended through the individual card refresh of Card 61 when part harvesting is used.  

Therefore, this shows that Card 61 has the most (advantageous) part dependencies among other assemblies 

that when Card 61 is design refreshed its components can be used as spares for other assemblies with 

similar components. 

The EOM model was also used to produce design refresh plans, in order to ensure system sustainment 

to a specified end of support date.  The model predicted that design refresh plans to ensure system 

sustainment until the year 2050 for the case study system include between 10 and 39 individual card 
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refreshes as shown in the sixth column of Table 2.  The implementation of harvesting led to an avoidance 

of 19 additional cards incurring EOM events by the year 2050—showing that there is part similarities 

among the cards within the electronic system, and that part harvesting is a viable tactic for delaying 

additional EOM events for systems whose cards have part similarities.  Design refresh planning (worst-

case) delayed 2 EOM events (compared to worst-case of tracking subsequent EOMs to 2050), due to 

eliminating the additional part demands via design refreshing. 

 
4  Discussion and Conclusions 
 
The business of supporting legacy electronic systems is challenging due to mismatches between the system 

support life and the procurement lives of the systems’ constituent components.  In this paper we describe an 

End of Maintenance (EOM) model, which is a stochastic discrete-event simulation that follows the life 

history of a population of parts and cards and determines how long the system can be sustained based upon 

existing inventories of spare parts and cards, and optionally harvesting of parts off of existing cards to 

increase system support life.    

The model described in this paper assumes “standard” parts.  DMSMS-type obsolescence problems in 

electronic systems also occur for non-standard (i.e., altered or programmable) parts.  Non-standard parts 

create several additional issues in the analysis of End of Maintenance.  First, there may not be a one-to-one 

correspondence between non-standard parts and the spares inventories from which they are drawn.  

Multiple unique non-standard parts may be drawn from a single inventory item, e.g., unprogrammed 

FPGAs (Floating Point Gate Arrays) may be used to create more than one unique part, or conversely a 

single non-standard part may need to draw multiple items from multiple inventories.  A second issue is that 

the definition of DMSMS-type obsolescence for non-standard parts is not be clear. 

The model could be extended to include non-obsolete parts that will become obsolete during the 

analysis period.  Obsolescence forecasting for electronic piece-parts is well developed and commercially 

available (e.g., [22-24]); forecasts could be used to determine when parts that are not obsolete at the start of 

the analysis will become obsolete.  However, such analysis requires a model (or policy) for how 

obsolescence is mitigated when these parts become obsolete, i.e., if lifetime buys are made, how buy 

quantities determined and what dates they are purchased for. 
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The EOM model described in this paper provides the legacy system supporter with insight about how 

long the system can be supported based on existing inventories of spare parts and cards including the 

critical identification of parts/cards (and their associated likelihoods) that cause system support loss.  The 

resulting forecasted system support life and its associated levels of uncertainty allow system supporters to 

make appropriate decisions concerning system sustainment and possible system replacement.  End of 

Maintenance analysis may be necessary in order to make a business case for replacing a legacy system 

effectively has no end of support date (or for which end of support dates are regularly extended). 
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Nomenclature 
 
 a  =  lower bound of a uniform distribution 

imAFD   =  adjusted forecasted demand of the ith part from the mth card 

 b  =  upper bound of a uniform distribution 

  AD   = date (in years) of the start of analysis 

 FFD   = date (in years) of the first failure 

 SD   = date (in years) the part was fielded 

 ikDD   = ith part forecasted degradation demand date from the kth inventory 

 iFD  =   ith part forecasted demand date  

 imFD   = ith part forecasted demand date from the mth card 

ikFDD   =  forecasted degradation date for the ith part from the kth inventory 

 ikG  =  number of ith parts considered degraded from the kth inventory 

 iH  =  preserved life fraction of ith part incurred from the physical action of harvesting (1 = no 

damage to the part from the harvesting process, 0 = all remaining life removed by the 
harvesting process) 

 k  =  number of life histories simulated 

 ijL  =  life removed from the ith harvested part from the jth card 

 iM   =  ith-ordered mean EOM time  

 ijM  =  ith-ordered EOM time in the jth life history 
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 fN  =  number of failures to date 

 ijN   =  number of occurrences as an ith-ordered EOM in the jth life history - either 1 (occurs) or 0 

(does not occur) 

 TN  =  total number of fielded parts within entire system 

 ikNP  =  number of ith parts remaining from the kth inventory 

 pO  =  operational hours per year 

 iP  =  ith-ordered EOM probability 

 t   = current simulation time (starting at t = 0) 

 Ht  =  simulation time when the harvesting action occurs 

 it  = simulation time when ith part was fielded ( it =0 for initial fielded parts) 

 

References 

[1] Alford, L., 2001, “The Problem with Aviation COTS,” IEEE Aerospace and Electronic Systems 
Magazine, 16(2), pp. 33-37. 

[2] Hall, J., and Naff, R., 2001, “The Cost of COTS,” IEEE Aerospace and Electronic Systems Magazine, 
16(8), pp. 20-24. 

[3] Sandborn, P., 2008, “Trapped on Technology’s Trailing Edge,” IEEE Spectrum, 45(4), pp. 42-58. 
[4] Sandborn, P., and Myers, J., 2008, “Designing Engineering Systems for Sustainment,” Handbook of 

Performability Engineering, ed. K.B. Misra, Springer, pp. 81-103, London. 
[5] Stogdill, R., 1999, “Dealing with obsolete parts,” IEEE Design and Test of Computers, 16(2), pp.17-

25. 
[6] Tomczykowski, W. J., 2003, “A Study on Component Obsolescence Mitigation Strategies and Their 

Impact on R & M,” Proceedings of the Annual Reliability and Maintainability Symposium (RAMS), 
Tampa, FL, pp. 332-338. 

[7] Cruchley, I., Dam, R., Gold, R., and Ferguson, B., 2010, “Bruce Power Aging Obsolescence 
Program,” Proceedings of the ASME International Conference on Nuclear Engineering, Xian China, 
pp. 347-356. 

[8] Singh, P., and Sandborn, P., 2006, “Obsolescence Driven Design Refresh Planning for Sustainment-
Dominated Systems,” The Engineering Economist, 51(2), pp. 115-139. 

[9] Zheng, L., Terpenny, J., Sandborn, P., and Nelson III, R., 2012, “Design Refresh Planning Models for 
Managing Obsolescence,” Proceedings ASME International Design Engineering Conferences & 
Computers and Information in Engineering Conference, Chicago, IL. 

[10] Shaffer, G., and McPherson, G., 2010, “FAA COTS Risk Mitigation Guide: Practical Methods for 
Effective COTS Acquisition and Lifecycle Support Revision 3.2,” Federal Aviation Administration. 

[11] Wilson, R. H., 1934, “A scientific routine for stock control,” Harvard Business Review 13(1), pp. 
116-128. 

[12] Kennedy, W. J., Patterson, J. W., and Fredendall, L. D., 2002, “An Overview of Recent Literature on 
Spare Parts Inventories,” Int. J. Production Economics, 76, pp. 201-215. 

[13] Guide, V. D. R., and Srivastava, R., 1997, “Repairable Inventory Theory: Models and Applications,” 
European Journal of Operational Research, 103, pp. 1-20. 

[14] Sheikh, A. K., and Younas, M., 2000, “Chapter 4: Reliability Based Spare Parts Forecasting and 
Procurement Strategies,” Maintenance, Modeling and Optimization, ed. M. Ben-Daya, S. O. Duffuaa, 
and A. Raouf, Springer, pp. 81-110, London. 



Final Manuscript for Journal of Mechanical Design (MD-13-1076) November 11, 2013 

35 
 

[15] Bharadway, U. R., Silberschmidt, V. V., Wintle, J. B., and Speck, J. B., 2008, “A Risk Based 
Methodology for Spare Parts Inventory Optimisation,” Proceedings of the ASME International 
Mechanics Engineering Congress and Exposition, Boston MA. 

[16] Chen, F-L, and Chen, Y-C, 2009, “An Investigation of Forecasting Critical Spare Parts Requirement,” 
Proceedings of the World Congress on Computer Science and Information Engineering, Los Angeles, 
CA, pp. 225-230. 

[17] Louit, D., Pascual, R., Banjevic, D., and Jardine, A. K. S., 2011, “Optimization Models for Critical 
Spare Parts Inventories — A Reliability Approach,” Journal of the Operational Research Society, 
62(6), pp. 992–1004. 

[18] Croston, J. D., 1972, “Forecasting and Stock Control for Intermittent Demands,” Operational 
Research Quarterly, 23(3), pp. 289-303.  

[19] Hong, J. S., Koo, H.-Y., Lee, C.-S., and Ahn, J., 2008, “Forecasting Service Parts Demand for a 
Discontinued Product,” IIE Transactions, 40(7), pp. 640-649. 

[20] Eppen, G. D., and Martin, R. K., 1988, “Determining Safety Stock in the Presence of Stochastic Lead 
Time and Demand,” Management Science, 34(11), pp. 1380-1390. 

[21] Sandmann, W., and Bober, O., 2009, “Stochastic Models for Intermittent Demands Forecasting and 
Stock Control,” Proceedings of the Vienna Conference on Mathematical Modelling, MATHMOD, 
Vienna, Austria. 

[22] Solomon, R., Sandborn, P., and Pecht, M., 2000, “Electronic Part Life Cycle Concepts and 
Obsolescence Forecasting,” IEEE Transactions on Components and Packaging Technologies, 23(4) 
pp. 707-713. 

[23] Josias, C., and Terpenny, J., 2004, “Component Obsolescence Risk Assessment,” Proceedings Series, 
Industrial Engineering Research Conference (IERC), Houston, TX. 

[24] Sandborn, P., Prabhakar, V., and Ahmad, O., 2011, “Forecasting Technology Procurement Lifetimes 
for use in Managing DMSMS Obsolescence,” Microelectronics Reliability, 51 pp. 392-399. 

  
 


