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ABSTRACT 

Prognostics and Health Management (PHM) technologies have been introduced into wind turbines to forecast the Remaining 
Useful Life (RUL). PHM with RUL predictions enables predictive maintenance for wind turbines prior to failure, thus avoiding 
corrective maintenance that may be expensive and cause long downtimes. For a wind farm managed using a power purchase 
agreement (PPA), a simulation-based European real options analysis model is used to schedule predictive maintenance by 
maximizing the predictive maintenance option value. For multiple wind turbines indicating RULs concurrently, the predictive 
maintenance value for each turbine depends on the operational state of all the other turbines, the amount of energy delivered, 
and the energy delivery target, prices and penalization mechanism for under-delivery defined in the PPA. A case study is 
presented in which the optimum predictive maintenance opportunity is determined for a wind farm managed using a PPA. To 
the authors’ knowledge, this is the first wind farm maintenance model including a PPA, and the case study demonstrates that 
the optimum predictive maintenance opportunity for a PPA-managed farm is different from the same farm managed using an 
“as-delivered” contract, and also differs from the optimum predictive maintenance opportunities for the individual turbines 
with RULs managed in isolation. 

Keywords: remaining useful life (RUL), prognostics and health management (PHM), wind farm, real options analysis (ROA), 
predictive maintenance, power purchase agreement (PPA) 

1. INTRODUCTION 

1.1. Background 

Maintenance practices for wind turbines generally include corrective maintenance and proactive maintenance: the former is 
implemented after failures occur, while the latter is carried out at predetermined intervals or time points to prevent failures. 
Proactive maintenance can be divided into preventive maintenance (also known as scheduled maintenance) and predictive 
maintenance that results from the inclusion of some type of system health management technology (either condition monitoring 
or prognostics and health management (PHM)) in the turbine. The major difference between preventive maintenance and 
predictive maintenance is that the former is performed after a fixed time or usage interval, while the latter is only implemented 
when there is a need for maintenance. 

A failure refers to the event or inoperable state in which the system or part of the system does not perform as previously 
specified, while a fault is the immediate cause of the failure. After a failure has happened, fault diagnosis can be employed to 
detect, locate, identify and isolate the fault by applying diagnostic algorithms, e.g., checking the consistency of the feature 
information of a real-time process that the system is experiencing against a healthy system [1,2]. After fault diagnosis, a 
corrective maintenance activity can be scheduled. 

Condition monitoring is the process of monitoring one or more parameters of condition, in order to detect a significant change 
that may be indicative of a developing fault [3], in a system prior to failure. Condition monitoring for wind turbines applies 
vibration analysis, acoustic emission, oil analysis, strain measurement, thermography and other techniques to monitor the 
current health of the major subsystems such as blades, gearbox, generator, main bearings and the tower, and also identifies the 
developing faults in real time [4–6]. PHM assesses the current state of health or reliability of a system that has not failed under 
its actual application conditions, and makes continuously updated predictions of when failure will occur based on its expected 
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future environmental and operational condition [7].1 Both condition monitoring and the PHM technologies enable predictive 
maintenance.  The primary difference between fault diagnostics and condition monitoring, and PHM, which is relevant to this 
paper, is that PHM provides an estimate of the remaining useful life (RUL) before failure.  The RUL (and its associated 
uncertainties) is the key driver behind the maintenance optimization model discussed in this paper. 

The wind, environmental conditions, and construction and material variations may cause system health degradation patterns to 
vary among wind turbines in the same farm, and as larger wind farms that are longer distances from operations and maintenance 
(O&M) centers emerge, wind farm maintenance decision-makers must avoid as many unnecessary visits to the wind farm as 
possible by implementing predictive maintenance practices. Otherwise, even minor problems may cause long downtimes and 
high O&M costs, especially for offshore wind farms. The benefits of predictive maintenance (as opposed to proactive and 
corrective maintenance) are well recognized [8]. Although preventive maintenance is the current mainstream for the wind 
industry, predictive maintenance is becoming more popular. Since a failure is generally a process rather than a sudden event, 
the earlier the failure process can be detected, the more flexibility exists for managing the process.  

The condition monitoring indications and PHM predictions can be received in real time, for example an on-line wind turbine 
pitch fault prognosis approach is introduced in [9]. However, much of the value of condition monitoring and PHM is off-line 
for maintenance planning.  When a developing fault is identified by condition monitoring or a remaining useful life (RUL) is 
predicted by PHM for a wind turbine system, there are multiple choices for the maintenance decision-maker: shutting the 
system down, reducing loads by changing the operation of the turbine, or implementing predictive maintenance.2 The major 
difference between condition monitoring and PHM is that the latter considers the future operational and/or environmental 
conditions and quantifies the RUL for key subsystems using prognosis approaches [10][11]. The wind farm PHM-based 
predictive maintenance scheduling using RUL information will be the focus in this paper. Given RUL predictions from the 
PHM system for wind turbines, the predictive maintenance scheduling is a decision support problem.   

 

 

1.2. Power Purchase Agreements (PPAs) 

A power purchase agreement (PPA) is a performance-based contract, also known as an outcome-based contract, for the 
purchase and sale of energy between a “buyer” who wants to purchase energy (e.g., a utility) and a “seller” who generates 
energy (e.g., a wind farm operator). The usage of PPAs is increasing globally for wind farms, as the total number of the wind 
farms with signed or planned PPAs reached 363, and the total capacity is 32,641 MW at the end of 2014 [12].  

Wind farms are typically managed using PPAs for several reasons. First, although the wind energy can be sold into the local 
energy market, the revenue is uncertain due to the intermittence of wind resources, and the average local market prices that 
vary daily and hourly tend to be lower than the contract prices defined in PPAs [13]. Second, PPAs guarantee a revenue stream 
in which the energy generated and delivered will be paid for on the agreed price schedule. Third, the buyers typically don’t 
build and operate wind farms themselves; instead they prefer to buy energy from the sellers through PPAs [14]. 

The term of the agreement, the contracting price and the price schedule are generally defined in a PPA [15]. The contract term 
is typically 20 years [13]. The levelized cost of energy (LCOE) for a wind project represents the estimated cost to generate the 
wind energy, and is forecasted for the entire contract term. The price of energy in a PPA is negotiated based on the LCOE by 
accounting for the possible risks that could increase the actual LCOE [16]. The contract price can be either constant or escalated 
annually throughout the contract term [14]. 

In a PPA, the buyer may agree to pay for each unit of energy generated and delivered at a set price; in addition, the PPA may 
also define a maximum energy delivery limit, a minimum energy delivery limit, or both for a year. Once the energy delivered 
has exceeded the maximum delivery limit, the buyer may choose to buy the excess energy at a lower price, or not to buy at all, 
e.g., [17–19]. The buyer may also decrease the maximum energy delivery target for the next year by the amount of energy 
over-delivered in the current year, e.g., [20–23].  

                                                           
1 Diagnosis is the process of determining what is wrong with a system; prognosis involves predicting the future outcome as a result of the 
current state of health. 
2 It is also possible that the wind turbine may have autonomous capabilities to avert the potential system failure (e.g., a fault tolerance ability 
or use of redundancy). 
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When a minimum delivery limit is defined, the seller may have to compensate the buyer for the output shortfall at an agreed 
upon price if under-delivery happens, e.g., [21,22,24]. Similarly, the buyer may also increase the minimum energy delivery 
target for the next year to compensate for the under-delivered amount, e.g., [20].  

1.3. Real Options Analysis (ROA) 

Discounted cash flow (DCF) analysis is a method used to value a project, company or asset over time. DCF models, whether 
analytical or simulation-based, capture the time value of money and can capture the uncertainties in the cash flow, but they do 
not account for the managerial flexibility that the decision-makers have to adapt to future uncertainties. Alternatively, a real 
option is the right but not the obligation to undertake business initiatives like deferring, abandoning, expanding, staging, or 
contracting. Real options originate from financial options, and ROA refers to the valuation of the real options. ROA assumes 
that managerial flexibility allows a value-maximizing decision to be made at each decision point. DCF analysis only accounts 
for the downside of the future, while ROA captures the value of the upside potential by accounting for the managerial flexibility. 

Real options can be categorized as the option to buy (a “call” option) or the option to sell (a “put” option). The most common 
real options are European and American options: the former has a fixed expiration date, whereas the latter can be exercised at 
any point in time before the expiration date. 

In this paper, the predictive maintenance is scheduled and the optimum predictive maintenance opportunity is determined for 
a wind farm managed using a PPA with multiple wind turbines indicating RULs. The time-history cumulative revenue loss and 
the avoided corrective maintenance cost paths are simulated to form the predictive maintenance value paths. By applying a 
Monte Carlo simulation-based European ROA approach, a series of predictive maintenance options are evaluated, each 
expiring on the date of a possible maintenance opportunity. 

The remainder of the paper is organized as follows: Section 2 formulates the European ROA approach for the wind farm 
managed using a PPA when multiple wind turbines indicate RULs. Section 3 presents a case study. Finally, Section 4 gives the 
conclusion and also discusses the future research opportunities. 

2. ANALYSIS METHODOLOGY 

2.1. Review of Wind Farm Maintenance Modeling 

There exist a significant number of DCF-based wind farm maintenance models, which can be categorized as either: Reliability-
Centered Maintenance (RCM) motivated models and simulation-based models. The major differences are how reliability and 
maintenance timing are modeled. 

The RCM motivated models “count” the number of failures, and predictive and corrective maintenance events, and formulate 
an empirical maintenance cost expression for a wind farm, by assuming a failure rate (e.g., an MTBF) and estimating the 
average number of failures during a specific period of time, e.g., [25–28]. Some models include predictive maintenance based 
on condition monitoring technologies indicating health degradations, and compare the life-cycle maintenance costs of various 
maintenance strategies, e.g., [29,30]. These models determine the number of condition monitoring based predictive 
maintenance events, but the actual timing of the predictive maintenance events cannot be modeled.  

Unlike the RCM motivated models, the simulation-based models can model the uncertainties of the predictive maintenance 
timing. These models use probability distributions representing the system reliability and a discrete-event simulation to model 
the failure and maintenance events, e.g., [31–33]. There have been an extensive predictive maintenance optimization studies 
performed using simulation-based models for wind farms, e.g., [34–37], which are also mainly based on the condition 
monitoring technologies. In these studies, the health threshold that triggers the predictive maintenance decision can be 
optimized, the maintenance decisions are made by checking the threshold, and the predictive maintenance will be implemented 
once the threshold is exceeded. For real wind turbine systems, when a specific threshold has been exceeded, it is not necessarily 
clear whether it is better to carry out the predictive maintenance as early as possible, to wait for another maintenance opportunity, 
or to run the system into failure and perform corrective maintenance. For real systems, the predictive maintenance decision 
depends on how fast future additional damage will accumulate and the type of contract that the wind farm is managed under. 

Both RCM motivated and simulation-based models presume fixed future conditions and cash flow scenarios, and do not account 
for the decision-makers’ managerial flexibility to adapt. To capture managerial flexibility during the support of systems, ROA 
has been applied to the maintenance modeling problems for offshore platforms, production lines, bridges and aircraft, e.g., [38–
42]. However, these works only model preventive maintenance using real options, and predictive maintenance is not considered. 
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In [43] the ROA approach was applied to the wind farm maintenance problem for the first time, and [43] was also the first 
work to optimize the wind turbine predictive maintenance decision based on the RUL predictions from PHM. However, the 
approach in [43] cannot be used to schedule the predictive maintenance, because the model determines the best maximum wait-
to-maintenance date. In reality when RUL predictions are obtained, the wind farm maintenance decision-makers want to 
determine the opportunity on which predictive maintenance should be done, given a known maintenance opportunity calendar 
(with uncertainties). Uncertainties in the RUL predictions and life consumption are not considered in [43], and the cumulative 
revenue loss during RUL, which reflects the value of the part of the RUL thrown away due to predictive maintenance, is not 
identified. 

In [10], the optimum predictive maintenance opportunity was determined for a single wind turbine indicating an RUL from 
PHM managed using an “as-delivered” contract. In [10] the cumulative revenue loss and avoided corrective maintenance cost 
time history paths are simulated considering the uncertainties in the RUL prediction and wind speed, and a simulation-based 
European ROA approach is applied to valuate a series of European style predictive maintenance options.  

In summary, PHM-based predictive maintenance optimization has not been considered by the existing DCF-based wind farm 
maintenance models, and DCF approaches to maintenance modeling do not include the maintenance decision-makers’ 
managerial flexibility, which is necessary when optimizing the PHM-based predictive maintenance scheduling problem. To 
manage flexibility, the ROA approach is more suitable than the RCM motivated and simulation-based maintenance models. 
When deciding the opportunity to schedule the predictive maintenance, a European ROA approach is more applicable than an 
American ROA approach (such as that used in [43]).  

Wind farms are typically managed using PPAs, and no existing maintenance models (DCF or ROA based) account for the 
terms in the PPAs. The optimum predictive maintenance opportunity for a PPA-managed farm will be impacted by the 
operational state of all the other turbines, the amount of energy delivered, and the energy delivery target, prices and penalization 
mechanism for under-delivery defined in the PPA.  The optimum predictive maintenance opportunity for a PPA-managed farm 
can be different from the same farm managed using an “as-delivered” contract, and differ from the optimum predictive 
maintenance opportunities for the individual turbines with RULs managed in isolation. 

2.2. A European ROA Approach for a Single Wind Turbine Managed Using an “As-delivered” Contract 

Before we address how to model wind farms managed using PPA contracts, we need to first review the application of the 
simulation-based European ROA to determine the optimum predictive maintenance opportunity for a single wind turbine 
managed using an as-delivered contract developed in [10].    

For a single wind turbine, predictive maintenance options are created after in situ PHM that generates RUL estimations is added 
to the turbine. When an RUL is predicted for a subsystem, there are multiple choices regarding the predictive maintenance for 
the maintenance decision-maker: performing the predictive maintenance at the earliest maintenance opportunity, waiting for 
some time for the predictive maintenance, or doing nothing and letting the turbine run to failure for corrective maintenance. 
By valuating the predictive maintenance option, the decision if and when to perform the predictive maintenance can be made. 

Assume a single wind turbine is managed using an “as-delivered” contract, which simply pays a set price for each unit of the 
energy delivered. For simplicity, we assume the energy generation capacity will not degrade as damage accumulates in the 
subsystems, and the predictive maintenance downtime is negligible. At time t0 an RUL is predicted for a subsystem in calendar 
time (RULC). Assume, for simplicity, that there are no uncertainties in the RULC prediction (note, uncertainties in the RUL 
prediction are included in [5] and in this paper, and will be discussed in detail in Section 2.5). Once the subsystem fails, the 
turbine will fail too. After time t0 there are continuous predictive maintenance opportunities, and the maintenance decision-
maker aims at determining if and when to implement the predictive maintenance. Since no uncertainty in the RUL has been 
assumed, the initial predictive maintenance decision will be made at time t0 and never change.3 If the predictive maintenance 
is not implemented, the predictive maintenance option expires, and the turbine will fail at time t0+RULC, leading to a corrective 
maintenance event with a downtime DT to restore it to operation. 

                                                           
3 In reality the RUL prediction may be checked periodically, and the maintenance decision can be updated accordingly as well after time t0. 
For simplicity RULC is assumed to be constant in this section; however the general model described in Section 2.5 does not assume a constant 
RULC. In Section 2.5 the uncertainties in both RULC and the wind speed (that sets the consumption rate of the RUL) are considered. 



 

5 

Fig. 1 graphically shows the construction of the predictive maintenance value. Assume the predictive maintenance will be 
implemented at the maintenance opportunity time t (t0 < t < t0+RULC). The cumulative revenue loss due to predictive 
maintenance, RL(t) is maximum (absolute value) at the first maintenance opportunity after time t0. This is because the most 
remaining life is disposed of if predictive mainenance is performed at this opportunity.  As time advances, less RUL is thown 
away (and less revenue is lost) until the last predictive maintenance opportunity before time t0+RULC.  The avoided corrective 
maintenance cost, CA(t), is assumed to be constant. When RL(t) and CA(t) are summed, the predictive maintenance value, VPM(t), 
is obtained, Equation (1), representing the extra value gained by performing the predictive maintenance at time t instead of the 
corrective maintenance at t0+RULC.  

𝑉 𝑡 𝑅 𝑡 𝐶 𝑡  (1) 

RL(t) represents the portion of the RUL thrown away when predictive maintenance is done prior to the end of the RUL. RL(t) 
can be calculated as the difference between the cumulative revenue that could be earned by performing the predictive 
maintenance at time t, CRPM(t0,t), and waiting until the failure for corrective maintenance, CRCM(t0,tF) (where tF represents the 
time point when the RUL is used up and failure happens). The subscript “PM” represents the predictive maintenance scenario 
in which predictive maintenance is implemented at time t, while “CM” represents the corrective maintenance scenario in which 
the turbine is run to failure for corrective maintenance. RL(t) can be calculated as 

𝑅 𝑡 𝐶𝑅 𝑡 , 𝑡 𝐶𝑅 𝑡 , 𝑡  (2) 

where tF is given by 

𝑡 𝑡 𝑅𝑈𝐿  (3) 

CA(t) represents the corrective maintenance cost that could be avoided by performing the predictive maintenance at time t. CA(t) 
is the sum of the avoided corrective maintenance parts, service and labor cost CCM that is assumed to be constant, and the 
avoided cumulative downtime revenue loss during downtime DT for corrective maintenance LDT. 

𝐶 𝑡 𝐶 𝐿  (4) 

LDT can be calculated as 

𝐿 𝐶𝑅 𝑡 , 𝑡 𝐷𝑇  (5) 

Where CRPM(tF,tF+DT) is the cumulative revenue that could be earned in the predictive maintenance scenario during DT. 

Detailed calculations of CRPM(t0,t), CRCM(t0,tF) and CRPM(tF,tF+DT) are given in [10]. 

To obtain VPM(t), the predictive maintenance needs to be implemented at time t, which has a cost of CPM. The difference between 
between VPM(t) and CPM represents the difference between the net revenues that could be earned in the predictive maintenance 
scenario compared and the corrective maintenance scenario calculated as Equation (6)  

𝑉 𝑡 𝐶 𝐶𝑅 𝑡 , 𝑡 𝐶 𝐶𝑅 𝑡 , 𝑡 𝐶 𝐶𝑅 𝑡 , 𝑡 𝐷𝑇  (6) 

On the right hand side of Equation (6), in the first pair of parentheses is the net revenue earned in the predictive maintenance 
scenario, which is a function of time t, and in the second is the net revenue of the corrective maintenance scenario, which is 
constant. 

 

Fig. 1. Simple predictive maintenance value formulation (RL(t), CA(t) and VPM(t) have monetary units) [10]. 
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We assume that the maintenance decision-maker is willing to schedule a predictive maintenance only if the predictive 
maintenance scenario generates more net revenue than the corrective maintenance scenario, otherwise the turbine will be run 
to failure for corrective maintenance. All the predictive maintenance opportunities after time t0 can be treated as real options. 
On each maintenance opportunity, a European ROA approach can be applied to get the predictive maintenance option value 

𝑂 𝑡
𝑚𝑎𝑥 𝑉 𝑡 𝐶 , 0 , 𝑡 𝑡 𝑡

0, 𝑡 𝑡
 (7) 

where OPM(t) is the predictive maintenance option value at time t.4   

If the difference between VPM(t) and CPM is larger than zero, the predictive maintenance will be implemented and the option 
value is the difference; otherwise the predictive maintenance will not be implemented and the option will expire leading to zero 
option value.  

We assume the objective of the maintenance decision-maker is to maximize the net revenue that could be earned from time t0 
to either a predictive or corrective maintenance event. So if there are no uncertainties and VPM(t) is larger than CPM, the optimum 
point in time to perform predictive maintenance would be at the last predictive maintenance opportunity before t0+RULC.  Due 
to uncertainties, there are many possible future paths for the system (only one path is shown in Fig. 1).  The analysis described 
in this section is performed on a representative set of paths generated by accounting for the uncertainties, see Section 2.5.    

The model described in [10] is confined to the treatment of a single turbine managed using an as-delivered contract.  In the 
remainder of this section we will discuss uncertainties and extend this model to wind farms (multiple turbines) that are managed 
using PPA contracts and discuss the solution of the model using ROA. 

2.3. Power Purchase Agreement (PPA) Modeling 

Now we assume a wind farm managed using a PPA. When there are multiple turbines with RUL predictions, different from 
the single turbine “as-delivered” case described in Section 2.2, the operational state of all the other turbines in the farm, the 
amount of energy delivered, and the energy delivery target, prices and penalization mechanism for under-delivery defined in 
the PPA will also affect the value of the revenue earned, which will affect the RL(t), CA(t) and VPM(t). Therefore, it is necessary 
to develop the PPA-based cumulative revenue and under-delivery penalty calculation method. 

Assume the PPA defines an annual energy delivery target ET at the beginning of the year (BOY). During each year, the energy 
generated before the target is met will be priced by a constant contract price PC. A lower constant excess price PE applies for 
all energy generated thereafter until the end of year (EOY). If the target is not met at EOY, the buyer has to purchase energy 
from other sources to fulfill the demand with a price PR (called the replacement price, assumed to be constant and higher than 
PC). According to the PPA, the seller must compensate the buyer for the latter’s overpaid energy cost, which is calculated as 
the shortfall energy amount priced by the difference between PR and PC. Both the RL(t) and CA(t) introduced in Section 2.2 will 
be influenced by the PPA items, therefore the next step is to develop a PPA framed revenue and penalty model. 

At time t0, there are J turbines operating normally, and K turbines are indicating RULs. Each of the K turbine’s RUL (called 
RULC,k, k  = 1 to K) is predicted for some subsystem, and that subsystem will fail before EOY if predictive maintenance is not 
implemented, causing the turbine to fail. From t0 to EOY there are multiple predictive maintenance opportunities. Due to the 
harsh environment and limited maintenance resource availability, especially for the offshore wind farms, we assume that the 
maintenance decision-maker will carry out predictive maintenance on all the turbines with RUL predictions during a single 
visit to the farm. The decision-maker wants to decide if and when the predictive maintenance should be scheduled for all K 
turbines. Otherwise, there will be a corrective maintenance event at EOY to fix and restore all failed turbines to operation.  

In the predictive maintenance scenario, if the predictive maintenance implemented on all K turbines at the opportunity time t 
(t0 < t < t0+RULC,min where RULC,min is the shortest RULC,k), and all K turbines will be maintained predictively together, the 
cumulative energy generated from BOY to time t by the whole farm, CEPM(t), can be calculated as 

𝐶𝐸 𝑡 𝐶𝐸 𝑡 𝐸 𝜏 𝐸 , 𝜏  (8) 

                                                           
4 Equation (7) does not discount the option value from time t to t0, i.e., it assumes that the time period is short. 
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where CE(t0) is the cumulative energy delivered by the whole wind farm from BOY to time t0, Ej(τ) and EPM,k(τ) are the energy 
generated by turbine j (the jth turbine operates normally) and k (the kth turbine indicates an RUL) respectively from time τ-1 
to τ. And τ is the time index of the year, t0 < τ ≤ EOY. Refer to [10] for the calculation of Ej(τ) and EPM,k(τ). 

The revenue earned by all K turbines from time τ-1 to τ RPM,K(τ) can be calculated as 

𝑅 , 𝜏 𝑃 𝜏 𝐸 , 𝜏  (9) 

where PPM(τ) is the energy price at time τ if predictive maintenance is implemented at time t, defined as 

𝑃 𝜏
𝑃 , 𝐶𝐸 𝜏 𝐸𝑇
𝑃 , 𝐶𝐸 𝜏 𝐸𝑇

 (10) 

The cumulative revenue earned from time τ1 to τ2 by all K turbines CRPM,K(τ1, τ2) can be calculated as (t0 < τ1 < τ2 ≤ EOY) 

𝐶𝑅 , 𝜏 , 𝜏 𝑅 , 𝜏  (11) 

If under-delivery penalty UPPM happens at EOY, it can be calculated as 

𝑈𝑃
𝐸𝑇 𝐶𝐸 𝐸𝑂𝑌 𝑃 𝑃 , 𝐶𝐸 𝐸𝑂𝑌 𝐸𝑇

0, 𝐶𝐸 𝐸𝑂𝑌 𝐸𝑇
 (12) 

Similarly, in the corrective maintenance scenario, the cumulative energy generated from BOY to time t by the whole farm, 
CECM(t) can be calculated as 

𝐶𝐸 𝑡 𝐶𝐸 𝑡 𝐸 𝜏 𝐸 , 𝜏  (13) 

where ECM,k(τ) is the energy generated by turbine k from time τ-1 to τ 

𝐸 , 𝜏
𝐸 , 𝜏 , 𝑡 𝜏 𝑡 𝑅𝑈𝐿 ,

0, 𝑡 𝑅𝑈𝐿 , 𝜏 𝐸𝑂𝑌
 (14) 

The revenue earned by all K turbines from time τ-1 to τ, RCM,K(τ) can be calculated as 

𝑅 , 𝜏 𝑃 𝜏 𝐸 , 𝜏  (15) 

where PCM(τ) is the energy price at time τ if all K turbines are run to failure 

𝑃 𝜏
𝑃 , 𝐶𝐸 𝜏 𝐸𝑇
𝑃 , 𝐶𝐸 𝜏 𝐸𝑇

 (16) 

The cumulative revenue earned from time τ1 to τ2 by all K turbines CRCM,K(τ1, τ2) can be calculated as 

𝐶𝑅 , 𝜏 , 𝜏 𝑅 , 𝜏  (17) 

The under-delivery penalty UPCM can be calculated as 

𝑈𝑃
𝐸𝑇 𝐶𝐸 𝐸𝑂𝑌 𝑃 𝑃 , 𝐶𝐸 𝐸𝑂𝑌 𝐸𝑇

0, 𝐶𝐸 𝐸𝑂𝑌 𝐸𝑇
 (18) 

In this section, PPA-based wind farm cumulative revenue and under-delivery penalty modeling have been introduced. The next 
step is to simulate the PPA-based RL(t), CA(t) and VPM(t), and also apply the European ROA approach to a wind farm managed 
under a PPA. 
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2.4. European ROA Approach for Multiple Wind Turbines Managed Using a PPA 

Section 2.3 formulated the cumulative revenue and under-delivery penalty.  In this section we calculate the cumulative revenue 
loss and avoided corrective maintenance cost and determine the predictive maintenance value using ROA. This is done by 
modeling the PPA-based RL(t), CA(t) and VPM(t) for the K turbines with RUL predictions, then applying the European ROA 
approach to obtain the OPM(t), based on which, the optimum predictive maintenance opportunity can be determined for the K 
turbines.   

The cumulative revenue loss by implementing predictive maintenance, RL(t), can be calculated as 

𝑅 𝑡 𝐶𝑅 , 𝑡 , 𝑡 𝐶𝑅 , 𝑡 , 𝐸𝑂𝑌  (19) 

The avoided corrective maintenance cost by replacing corrective maintenance with predictive maintenance at t, can be 
calculated as 

𝐶 𝑡 𝐶 , 𝑈𝑃 𝑈𝑃 𝐿  (20) 

where CCM,K is the corrective maintenance parts, service and labor cost for all K turbines at EOY defined as 

𝐶 , 𝐶 ,  (21) 

The second item in parentheses in Equation (20) is the under-delivery penalty due to corrective maintenance.  LDT can be 
calculated as 

𝐿 𝐶𝑅 , 𝑡, 𝐸𝑂𝑌 𝐶𝑅 , 𝑡, 𝐸𝑂𝑌  (22) 

The predictive maintenance value VPM(t) is 

𝑉 𝑡 𝑅 𝑡 𝐶 𝑡  (23) 

The predictive maintenance opportunities that follow time t0 can be treated as real options, and on each opportunity t, the 
European ROA approach can be applied as 

𝑂 𝑡
𝑚𝑎𝑥 𝑉 𝑡 𝐶 , , 0 , 𝑡 𝑡 𝑡 𝑅𝑈𝐿 ,

0, 𝑡 𝑅𝑈𝐿 , 𝑡 𝐸𝑂𝑌
 (24) 

where CPM,K is the corrective maintenance parts, service and labor cost for all K turbines at time t defined as 

𝐶 , 𝐶 ,  (25) 

The European ROA approach has the flexibility to choose not to carry out the predictive maintenance if corrective maintenance 
is more beneficial. On each predictive maintenance opportunity before RULC,min, if VPM(t) is higher than CPM,K, predictive 
maintenance will be implemented on all K turbines; otherwise, all K turbines will be run to failure, and the OPM(t) is 0. After 
RULC,min, the predictive maintenance option expires and the OPM(t) is 0. By valuating the option values of all possible 
maintenance opportunities between t0 and RULC,min as a series of European options, the optimum predictive maintenance 
opportunity can be determined as the opportunity with highest OPM(t).  

The maintenance decision-maker may also want to schedule predictive maintenance for each of the K turbines individually, in 
which case the VPM(t) paths can be generated for each of the K turbines first. Then the European ROA can be applied to each 
of the K turbines to determine its own optimum predictive maintenance opportunity.  

2.5. Uncertainties and Path Simulation 

So far we have not addressed uncertainties in the RUL predictions.  Without RUL uncertainties,the optimum predictive 
maintenance opportunity is always at the peak point of the VPM(t) curve (Fig. 1), which is the last opprtunity before RULC,min. 
Wind turbines are always in presence of random factors, both the RUL predictions and the rate at which the predicted remaining 
life is consumed, are uncertain [44].  For example, the RUL for a particular subsystem may be articulated in rotational cycles 
and there would generally be uncertainty in the number of cycles remaining.  Additionally, the mapping of the cycles to time 
requires assumptions about the wind and other environmental conditions (which are also uncertain) – this is the rate of the RUL 
consumption. 
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Uncertainty quantification refers to the quantitative characterization and reduction of uncertainties, to quantify the uncertainties 
in system output (e.g., the optimum predictive maintenance opportunity) given the uncertain inputs (e.g., the RUL prediction 
and the RUL consumption rate). Research has been performed on uncertainty quantification techniques for system fault 
diagnosis and for PHM, e.g., a real-time fault diagnosis technique was developed for stochastic nonlinear systems subject to 
unknown input disturbances and Brownian motion [45]. Uncertainty quantification approaches include probabilistic approaches 
and non-probabilistic approaches. Simulation-based methods, such as Monte Carlo simulation, are one type of the probabilistic 
approach [46]. Monte Carlo simulation can avoid an analytical calculation that can be cumbersome and less general, therefore 
it has been widely used in the wind farm maintenance modelling area [32–37,43], and will be used here. 

We first assume the turbine RUL is consumed by rotor rotations in cycles. Therefore a probability distribution can be used to 
represent the uncertain RUL estimation in cycles caused by fatigue for each of the K turbines at time t0; this includes 
uncertainties from the sensors, data reduction methods, damage accumulation models and the material parameters [10]. The 
mean of the distribution is RULF,k

 with known standard deviation.5 For example, the RUL distribution assumed in the case 
study in Section 3 is shown in the right plot of Fig. 2.  By using Monte Carlo simulation, M ARULF,k samples (the actual RUL 
sample in cycles) can be simulated for turbine k. 

We assume that wind is the major environmental load that causes damage to the wind turbine’s key subsystems (e.g., blade, 
main shaft and gearbox) after time t0. A probability distribution can be used to describe the historical wind speed data, and 
using Monte Carlo simulation and the Power Law, M wind speed paths can be simulated, each of which represents a possible 
future wind profile that the whole wind farm is going to experience after time t0. The wind speed distribution assumed for the 
case study is shown in the left plot of Fig. 2 in Section 3. So for turbine k, by calculating the RUL consumption caused by the 
rotor rotational cycles under wind, M ARULC,k (the actual RUL sample in calendar time) can be obtained from the M ARULF,k 
samples and wind speed paths. This process is repeated for all the K turbines with RUL predictions [10]. 

A Monte Carlo simulation method can be used to generate M paths for RL(t), CA(t) and VPM(t), each of which represents one 
possible future that could happen. At each possible predictive maintenance opportunity, the M OPM(t) paths can be averaged to 
get the expected predictive maintenance option value EOPM(t). So by checking all possible opportunities, the optimum 
predictive maintenance opportunity can be selected as the one with highest EOPM(t). 

3.  CASE STUDY 

In this section, the European ROA approach is applied to a wind farm managed using a PPA with multiple turbines indicating 
RULs concurrently. 

We assume there is an offshore wind farm with 5 turbines, the buoy height 10-year 10-minute average wind speed data are 
obtained from the buoy station [47]. A Weibull wind speed distribution (left plot of Fig. 2) is assumed with parameters η = 

                                                           
5 It should be noted that the RUL can be represented as a time or any applicable lifetime usage measure depending on the particular failure 
mechanism, and the model developed in this paper is applicable to any RUL distribution type. 

 

Fig. 2. Left – Weibull distribution for the buoy station wind speed data, and right – normal distribution for the turbine 1 
RUL prediction. 
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7.1470 m/s and β = 1.9733 [10]. All 5 turbines are assumed to be Vestas V-112 3.0 MW, with rated output power of 3 MW 
[48].  

We assume in the PPA managing the farm the ET is 40,000 MWh, PC, PE and PR are assumed to be $20/MWh, $10/MWh and 
$40/MWh respectively. At t0 = 8000 hrs when EC(t0) is 36,000 MWh, RULs are predicted for turbine 1 to be 120,000 cycles 
(with 40,000 cycles standard deviation) and for turbine 2 to be 150,000 cycles (with 50,000 cycles standard deviation). For 
each turbine, a normal distribution (shown in the right plot of Fig. 2) is used to represent the RUL estimations [49–51]. We 
assume all the other turbines are operating normally. The RL(t), CA(t) and VPM(t) paths can be generated for turbines 1 and 2 
according to Equations (8) through (23) as shown in Fig. 3. 

As shown in the left plot in Fig. 3, all the RL(t) paths start at different points on the vertical axis, because the longer the ARULC,k 
is, the more cumulative revenue will be lost if predictive maintenance is implemented, and the lower the path’s initial value is. 
All the RL(t) paths are ascending over time, because the later the predictive maintenance is carried out, the less cumulative 
revenue will be lost. All the RL(t) paths terminate at different time points of ARULC,min, due to the uncertainties in the RUL 
prediction and the wind speed. In the middle plot in Fig. 3, each CA(t) path is constant over time. LDT has different levels, 
because the lengths of turbines 1 and 2’s total corrective maintenance downtime differ among the paths (caused by the 
uncertainties in the RUL prediction), and the wind speed is uncertain too, therefore all CA(t) paths have different values (UPPM 
and UPCM are both $0 in this example). By combining RL(t) and CA(t) paths according to Equation (23), the VPM(t) paths shown 
in the right plot in in Fig. 3 are obtained. 

Based on 10,000 simulated VPM(t) paths, using Equation (24) and (25), OPM(t) values are obtained. Then at each predictive 
maintenance opportunity, all OPM(t) values are averaged to get the EOPM(t) values as shown in Fig. 4. The optimum predictive 
maintenance opportunity (indicated by the dash line) is 321 hours, with EOPM(t) of $8,821. In Fig. 5, at the selected optimum 
predictive maintenance opportunity, 93.5% of the paths choose to implement the predictive maintenance, indicating that the 
European ROA approach is not targeting the total avoidance of failure and corrective maintenance, but rather maximizing the 
EOPM(t) value. The ultimate tradeoff of the European ROA approach is to minimize the corrective maintenance risk while 
minimizing the value of the part of the RUL thrown away by predictive maintenance.  

If the predictive maintenance is only available every 48 hours, the EOPM(t) is shown in the left plot of Fig. 6. The optimum 
predictive maintenance opportunity changes to 14 days (336 hours) after time t0, with the EOPM(t) value of $8,314. If compare 
with the case in Fig. 4, due to the constraint on the predictive maintenance opportunities, the optimum predictive maintenance 
opportunity is 15 hours later (+4.7%), while the EOPM(t) value is $507 fewer (-5.7%).  

 

Fig. 3. Left – RL(t) paths, middle – CA(t) paths, and right –VPM(t) paths for turbines 1 and 2 (100 paths are shown). 
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If the same wind farm is managed using an “as-delivered” contract with the same PC, the optimum predictive maintenance 
opportunity will change to 12 days (288 hours) after t0 with the EOPM(t) value of $15,671 as shown in the right plot of Fig. 6. 
The change happens because in the PPA case over-delivery happens on some paths before EOY, which makes the RLDT and 
CA(t) lower than the “as-delivered” contract case. For the PPA case, if there are turbines not operating at time t0, the optimum 
predictive maintenance opportunity will shift to 12 days (288 hours) after t0 as shown in Fig. 7. When one or two turbines are 
down, LDT of some paths will become higher because with less operational turbines, ET will be reached later, which means the 
higher PC will apply for a longer period of time. For some other paths under-delivery will happen. Therefore, CA(t) will increase 
and the optimum predictive maintenance opportunity selection tends to be more conservative. 

 

 

Fig. 4. EOPM(t) curve for turbine 1 and 2 (predictive maintenance opportunity is once every hour). 
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If either turbine 1 or 2 are managed in isolation using a PPA, when the RUL is predicted, the optimum predictive maintenance 
opportunity may be different from when they are managed within a wind farm. Assume the PC, PE and PR are the same as the 
previous wind farm case. At t0 = 8000 hrs of the year, ET = 8,000 MWh, EC(t0) = 7,200 MWh (both are 1/5 of the wind farm 
case), an RUL is predicted for turbine 1. As shown in Fig. 8, by applying the European approach, the optimum predictive 
maintenance opportunity is 12 days (288 hours) after t0. While accoding to the left plot of Fig. 6, the optimum predictive 
maintenance opportunity for turbines 1 and 2 in the 5-turbine farm with all turbines operating normally is 14 days (336 hours) 
after t0. The difference happens because over-delivery will happen in the wind farm case while not in the turbine 1 in isolation 
case. 

 

 

Fig. 5. Percentage of the paths implementing predictive maintenance (predictive maintenance opportunity is once per 
hour). 
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Fig. 7. EOPM(t) curve for turbines 1 and 2 when the number of turbines down is varying (predictive maintenance 
opportunity is once every 48 hours). 

 

Fig. 6. EOPM(t) curves for turbines 1 and 2 when managed using a PPA or an “as-delivered” contract (predictive 
maintenance opportunity is once every 48 hours). 
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4. CONCLUSION 

The objective of the work presented in this paper is to schedule the optimum predictive maintenance opportunity for wind 
farms managed using PPAs with multiple turbines indicating RULs concurrently. The model presented in this paper extends a 
model described in [10] that only applies to a single turbine and an “as-delivered” contract to a wind farm managed using a 
PPA. Uncertainties in the wind speed and the RUL predictions are considered, and a Monte Carlo simulation based European 
ROA approach is applied. The predictive maintenance value for each turbine with an RUL prediction depends on the operational 
state of all the other turbines in the same farm, the amount of energy delivered, and the energy delivery target, prices and 
penalization mechanism for under-delivery defined in the PPA. According to the case study, when there are turbines that are 
not operating in the farm, the revenue loss and under-delivery penalties due to corrective maintenance on some paths will be 
significant; therefore, the optimum predictive maintenance opportunity selection will tend to be conservative. More 
importantly, the optimum predictive maintenance opportunity for a wind farm that is managed using a PPA, may differ from 
when the same farm is managed using an “as-delivered” contract, and also differ from when the individual turbines with RULs 
are managed in isolation. The reason is that the cumulative energy delivered, contract and excess prices, energy delivery target 
and the under-delivery penalization mechanism defined in the PPA influence the values of both the cumulative revenue loss 
and the avoided corrective maintenance cost. This influence was demonstrated in a case study where an over-delivery occurs 
by the EOY and therefore the avoided corrective maintenance cost is lower than in the “as-delivered” contract case. 

 

In the future, the collateral damage that causes higher corrective maintenance costs, the power generation capacity degradation 
and the escalating predictive maintenance cost due to damage accumulation will be studied. The uncertainties in the predictive 
maintenance opportunities will also be introduced. 

The current model only determines the optimum opportunity for a single predictive maintenance event; the model could be 
extended throughout the wind farm’s whole life cycle by assuming that the predictive maintenance after RUL predictions will 
always be scheduled using the developed approach. Therefore, multiple predictive maintenance, corrective maintenance and 

 

Fig. 8. EOPM(t) curves for when turbine 1 is managed in isolation, and when turbines 1 and 2 are managed in a wind farm 
(predictive maintenance opportunity is once every 48 hours). 
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preventive maintenance events can be considered using an ROA-based discrete-event simulator, and a life-cycle maintenance 
model to estimate the life-cycle O&M costs and net revenue for a wind farm using a PPA could be developed. 

The uncertainties in the RUL prediction represent an important input to the model developed in this paper.  Understanding the 
causes and correlation of these uncertainties represents a critical topic for future research to support all types of maintenance 
modeling. 
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NOMENCLATURE 

ARULC,k  RUL sample in calendar time for turbine k 
ARULC,min shortest ARULC,k 
BOY  beginning of the year 
CCM  corrective maintenance parts, service and labor cost for a single turbine 
CCM,k  corrective maintenance parts, service and labor cost of turbine k 
CCM,K  corrective maintenance parts, service and labor cost of all K turbines 
CPM  predictive maintenance parts, service and labor cost for a single turbine 
CPM,k  predictive maintenance parts, service and labor cost of turbine k 
CPM,K  predictive maintenance parts, service and labor cost of all K turbines 
CA(t) avoided corrective maintenance cost at time t 
CE(t0) cumulative energy delivered by the whole wind farm from BOY to t0 

CECM(t) cumulative energy delivered by the whole wind farm from BOY to t in the corrective maintenance scenario 
CEPM(t) cumulative energy delivered by the whole wind farm from BOY to t in the predictive maintenance scenario 
CRCM,K(τ1, τ2) cumulative revenue earned  from time τ1 to τ2 by all K turbines in the corrective maintenance scenario 
CRPM,K(τ1, τ2) cumulative revenue earned from time τ1 to τ2 by all K turbines in the predictive maintenance scenario 
DT  downtime of corrective maintenance for a single turbine 
Ej(τ)  energy generated by turbine j from τ-1 to τ 
ECM,k(τ) energy generated by turbine k from τ-1 to τ in the corrective maintenance scenario 
EPM,k(τ) energy generated by turbine k from τ-1 to τ in the predictive maintenance scenario 
EOPM(t) expected predictive maintenance option value at time t 
EOY end of the year 
ET annual energy delivery target of the wind farm in PPA 
J number of turbines operating normally in the wind farm at time t0 

K number of turbines indicating RULs in the wind farm at time t0 
LDT revenue loss during downtime for corrective maintenance 
M  number of wind speed paths 
OPM(t) predictive maintenance option value at time t 
PC  contract price in PPA 
PCM(τ)  energy price at time τ in the corrective maintenance scenario 
PE  excess price in PPA 
PPM(τ)  energy price at time τ in the predictive maintenance scenario 
PR  replacement price in PPA 
RCM,K(τ) revenue earned by all K turbines from τ-1 to τ in the corrective maintenance scenario 
RPM,K(τ) revenue earned by all K turbines from τ-1 to τ in the predictive maintenance scenario 
RL(t) cumulative revenue loss at time t 
RULC predicted remaining useful life for a subsystem in a single turbine in calendar time  
RULC,k predicted remaining useful life for turbine k in calendar time  
RULC,min shortest RULC,k 
RULF,k  predicted remaining useful life for turbine k in cycles 
t time of the predictive maintenance opportunity, t0 < t < t0+RULC,min 
tF  time when the RUL for a single turbine is used up and failure happens 
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t0 time of the year when RULs are predicted for K turbines and predictive maintenance decision needs to be 
made 

UPCM  under-delivery penalty in the corrective maintenance scenario 
UPPM  under-delivery penalty in the predictive maintenance scenario 
VPM(t) predictive maintenance value at time t 
β  Weibull distribution shape parameter 
η  Weibull distribution scale parameter 
τ  time of the year, t0 < τ ≤ EOY 
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