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Abstract

This paper presents a quantitative solution that minimizes the life cycle cost of a product by developing an optimal

product validation plan. Dependability constitutes an integral view of a product’s reliability, availability, maintainability,

quality, and safety. The methodology developed in this paper incorporates several dependability-related activities into a

comprehensive probabilistic cost model that enables minimization of the product’s life cycle cost. The model utilizes the

inverse relationship between the cost of product validation activities and the expected cost of repair and warranty returns.

The model emphasizes the test duration and sample size for the environmental qualification tests performed in a product

validation program. The overall stochastic cost model and its minimization are done with Monte Carlo simulation in order

to account for uncertainties in model parameters. The model is demonstrated on an automotive electronics application.

The results of this work provide application-specific optimal product validation plans and evaluate the efficiency of a

product validation program from a life cycle cost point of view with an emphasis on the cost of validation and product

warranties.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Life cycle cost (LCC) analysis is a tool that
produces important metrics for choosing the most
cost-effective approach from a series of alternatives.
LCC generally refers all the costs associated with a
product throughout the product’s life. The exact
content of LCC varies depending on the horizon of
the interested party; however, generally LCC

includes conceptual/preliminary design costs, de-
tailed design and development costs, production
and/or construction costs, and product use/support/
phase-out/disposal costs (Fabrycky and Blanchard,
1991). In this paper, LCC is used to refer to the
combination of design, validation, manufacturing,
and warranty costs. One important contributor to
LCC for many types of products is the cost of
product failure. The product characteristics asso-
ciated with a product’s potential failures or mal-
functions are often summarized by the term
Dependability, which constitutes an integral view
of product’s reliability, availability, maintainability,
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quality, and safety (Fernández, 2001). This paper
focuses on two major quantifiable dependability
contributions: reliability and quality.

To assure uninterrupted performance during a
system’s mission life, product testing and validation
is conducted as an important part of the develop-
ment cycle. Product validation activities normally
include reliability analysis and testing (both func-
tional and environmental), which are intended to
prove that the design satisfies specified quality and
reliability requirements. From a supplier’s view-
point, the cost of product validation activities is a
significant variable in the overall cost model.
Product development activities associated with
dependability are presented in Fig. 1.

Clearly product validation activities have a direct
impact on the expected warranty cost, although in
many industries the issue of product validation cost
and its impact on the development program are not
given sufficient attention especially in the early
stages of product planning.

Traditionally, in the initial phase of the business
cycle during product quoting, the costs of product
development and validation are treated as a one-
time expense, and usually not treated in conjunction
with the rest of the product’s non-recurring costs.
This often leads to a customer’s insistence on the
highest possible reliability without proper consid-
eration for the costs involved in the process. As an
example, in the mid-1990s, one of the major
automotive manufacturers was on a quest to
improve quality and reduce warranty claims. They
decided to approach the problem exclusively from
the product validation process. The product valida-
tion organization calculated the number of test
samples and finds that for a required reliability of
0.90 with a confidence level of 90%, the number of
test samples required is 22 (see Appendix A for a
discussion of sample size calculations). If the
reliability requirement is raised to 0.99, the number
of required test samples becomes 229. As the
reliability approaches 1.0 (100%), the number of
test samples required approaches infinity. Ob-

viously, the suppliers want to minimize validation
testing in order to save money, while the customer
often assumes that more testing by the supplier will
solve all warranty problems—in this case the
customer desired increasing reliability targets with-
out an accurate understanding of the economic
benefits (or lack thereof).

Product warranty is a significant contributor to
the post-manufacturing portion of the LCC. For
example, according to Nasser et al. (2002), on
average General Motors spends approximately $3.5
billion per year (roughly 22.5 million warranty
claims) paying dealerships to repair failed parts
under warranty. Original Equipment Manufac-
turers (OEMs), the brand name of the product,
often penalize their suppliers based on their cost of
warranty by passing to the suppliers all or part of
their warranty cost (Balachandran and Radhakrish-
nan, 2005). Based on these considerations, suppliers
must make decisions at the beginning of a product
development cycle regarding how much should be
spent on product validation and estimate the effect
of that spending on the expected warranty cost.
Project managers often need to focus their activities
on the dependability-related variables of LCC
analysis, since these are the inputs that can be
affected during the development process.

Fig. 2 shows a qualitative diagram of the
relationship between the pursued reliability and
the total cost. The higher the pursued reliability of
the product, the higher the product development
cost (the ascending curve). At the same time the
higher the achieved dependability of the product,
the lower the cost of the associated warranty
and service (the descending curve). Relationships
similar to Fig. 2 have been referred to as ‘contrac-
tor’s cost vs. reliability’ (Blischke and Murthy,
1994) and ‘dependability vs. non-dependability cost’
(Fernández, 2001).

The sum of those two costs in Fig. 2 resembles a
U-shaped curve with a minimum at the lowest sum
of product validation and warranty cost, thus
minimizing the contribution to total LCC. Unlike
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validation cost, the cost of warranty is not known
upfront and involves a process of modeling and
forecasting discussed in detail later in this paper.

Validation activities are defined as the formal
process of confirming through environmental test-
ing, analyses, inspections, and other engineering
activities that product reliability requirements are
met. Validation potentially improves the product’s
quality (this assumes that problems discovered
during validation are fed back into the development
process) and validation also improves the reliability
prediction for the product thereby making the
warranty cost forecast more accurate. However,
validation can be a significant expense that must be
traded off against the value gained. Accurate
modeling of the validation costs (and their relation
to the reliability and its associated confidence level)
coupled with warranty cost modeling enables the
customer to optimize the reliability targets based on
LCC minimization.

In this paper, we develop a life cycle model that
incorporates several key elements of dependability
to enable the study of a set of strategic choices
facing engineers and project managers as they
develop the best product development flow in order
to minimize the total expenses associated with
product failures.

1.1. Modeling nomenclature

ad design cost of the project
ae cost of equipping one test sample
am manufacturing cost on a per unit basis

amnt cost of monitoring one test sample during
validation

ap cost of producing one test sample
aparts cost of the spare parts per repair—random

function f2(x; g2)

aPM average cost of preventive maintenance
apv total cost of product validation
aW warranty cost per unit per repair
b Weibull slope of the failures observed

before the time point tS
bT historical Weibull slope for primary failure

mode.
C confidence level
D depreciation of test chamber
Dc(N, tT) dependability reliability cost function
F(t) cumulative distribution function for the

first time to failure
FForecast(tML) expected percent of cumulative fail-

ures obtained using the warranty forecast
model extended to the mission life tML

y vector of design parameters
K test equipment capacity
k number of recorded failures
L number of service lives the product is tested

for
M maintenance cost
MTBFEQ Mean Time Between Failures of the test

equipment (repairable system)—random
function f1(t; g1)

N test sample size
n total production volume
nf number of parts expected to fail during the

warranty period
NPM number of preventive maintenances per

year
nsold number of units sold, which approximates

the total number of manufactured units
O0 overhead expenses (management, certain

fixed costs, etc.)
QCorr correction factor, a random variable ob-

tained from the ratio of predicted reliability
and demonstrated reliability approximated
from the similar products.

R reliability of the product
R(t) reliability function
RDemo(tML) a demonstrated reliability at the end of

a mission life (see Appendix A for details)
RForecast(tML) predictive model reliability
t time
tBogey test duration (one mission life)
tML product mission life (e.g., 10 years, 100,000

miles, etc.)
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trepair duration of repair—random function f3(t; g3)
tS hazard rate stabilization point
tT test duration
TW warranty period (e.g., 2 years, 36 months,

etc.)
Y additional equipment expenses
W warranty terms (can be one- or two-

dimensional)
WC total warranty cost for a renewable process
L(t) cumulative failure intensity function (num-

ber of replacements per unit)
gi vector of statistical parameters. These

parameters can be obtained from statistical
analysis of the repair and failure data of a
particular test facility

Z Weibull scale parameter of the failures
observed before the time point tS

jrepair repair labor rate
jT hourly labor rate of performing the test
xi vector of statistical distribution parameters

for the warranty prediction model
d e ceiling function, indicating rounding up to

the next integer

2. Life cycle cost analysis and its dependability-

related variables

Eqs. (1) and (2) show the components of the
supplier’s cost for products in general and auto-
motive products in particular (Kleyner et al., 2004).1

LCC ¼ Design costþ Validation cost

þManufacturing costþWarranty costþOverhead:

ð1Þ

Writing Eq. (1) more explicitly produces

LCC ¼ adðy;W Þ þ apvðyÞ þ namðyÞ þ nf ðy;W ÞaWðyÞ þO0.

(2)

The cost of product development that is included
in product quotes is usually based on forecasting
methods, such as analogy models, expert judgment,
prototype models, top-down calculations, and
others (Bashir and Thompson, 2001). Thus, ad,
which is based on historical development cost of

similar product lines, is assumed to be independent
of product dependability factors. The basis to
support this supposition is discussed in the next
paragraph.

In today’s competitive environment a fixed
budget is often allocated for design and develop-
ment. Many companies do not allocate budgets for
redesign, since redesign will make the company non-
competitive, therefore when redesigns happen they
are dealt with on an emergency basis and usually
funded from profits. A similar view is taken with
product recalls; they are also an emergency activity
funded from profits. Small redesign expenses
relative to the expected product revenue are
included in the model and the large redesign
expenses are not since there is no accurate way to
account for them. The majority of the design
changes resulting from failures during validation
are assumed to be relatively minor. For example, in
the automotive electronics industry, changes may
include circuit board re-mounting, component
derating/uprating, enclosure redesign, seal change,
connector type change, etc. Also at the product
validation stage, the design changes are relatively
inexpensive. Therefore we model the reliability
(validation and warranty) portion of the LCC as

Reliability cost ¼ apvðyÞ þ nf ðy;W ÞaWðyÞ. (3)

Eq. (3) is consistent with the reliability cost model
depicted in Fig. 2, where apvðyÞ is the ascending part
of the curve and nf ðy;W ÞaWðyÞ represents the
descending portion, which will be described in more
detail in Section 4 of this paper.

3. Model formulation

Fig. 3 provides the general outline of the LCC
model. The process starts with the product defini-
tion and then splits into the parts representing the
ascending and descending curves of Fig. 2. The two
key blocks corresponding to the ascending curve
include the cost of ownership (COO) of the test
equipment required to conduct particular environ-
mental tests and the contribution of the sample size
cost. The descending curve deals solely with the
expenses related to future product failures, such as
warranty and service costs. After all the key inputs
are estimated, the LCC value is simulated, which is
followed by the minimization process. The five key
input blocks of Fig. 3 will be addressed in the
subsections that follow.
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3.1. Product specifications

Typically, the first step in product development
includes some form of product definition, which
requires a wide variety of information including
product specifications, functionality, usage, and
others attributes. The majority of the products
designed to be used by consumers in the real world
are validated using a series of environmental tests
such as those discussed in Lewis (2000). Reliability
requirements usually cover a wide variety of
environmental tests including temperature, humid-
ity, vibration, mechanical shock, dust, electrical
overloads, and many others. Other relevant speci-
fications often include warranty terms and other
contractual obligations concerning product service
and repair.

3.2. Test equipment cost of ownership (COO)

Test and validation of the product is an integral
part of the product development cost. In some
industries, including consumer and automotive
electronics, the cost of product validation can easily
reach millions of dollars depending on the type of
the product, its geometry, technology, functional
requirements, reliability specifications, and other
parameters.

The primary test and validation cost contributors
are test equipment COO, labor cost, test sample
population attributed costs, floor space, laboratory
overheads, and other miscellaneous expenses. The
general COO concept relates to the total cost of
acquiring, installing, using, maintaining, changing,
upgrading, and disposing of a piece of equipment

over its predicted useful lifespan. The major
concepts of COO as it is applied to manufacturing
are discussed in LaFrance and Westrate (1993) and
Dance et al. (1996).

3.3. Test duration and sample size cost

Test sample size also has a large effect on the cost
of product validation. Each test sample carries the
following costs associated with the sample popula-
tion:

� Cost of producing a test sample.
� Cost of equipping each test sample. In the

electronic industry this would include harnesses,
cables, test fixtures, connectors, etc.
� Cost of monitoring each sample during the test.

For example, in the electronics industry this
includes the labor cost associated with: (a) design-
ing and building the load boards that simulate the
inputs to the electronic units, (b) connecting and
running the load boards, (c) recording the data,
and (d) visual and other types of inspection.

Considering that some tests may run for weeks or
even months, these expenses can be significant. The
mathematical aspects of calculating test sample size
are presented in Appendix A. It is also important to
note that an increase in sample size sometimes
causes the growth of the equipment-related costs as
a step-function due to the discrete nature of the
equipment capacity. For example, if the capacity of
a testing chamber is 25 units of a particular
geometric size, then a test sample of 26 units would
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require two chambers if simultaneous testing is
desired.

Calculation of product validation cost includes
both the COO of test equipment and the expenses
associated with each test sample size. Capital and
depreciation cost (D), which includes acquisition,
installation, and cost of scraping, spread over the
useful life of the equipment. Maintenance cost (M),
includes both scheduled and unscheduled mainte-
nance, plus indirect maintenance cost. Indirect
maintenance includes technician training, lost rev-
enue due to the equipment idle time, etc. Miscella-
neous costs (Y) include energy cost, floor space,
upgrades, insurance, etc. Therefore, the total cost of
product validation per test can be represented by

apv ¼ tT jT þ
ðM þDþ Y Þ

365� 24

� �
N

K

� �

þNðap þ ae þ amntÞ. ð4Þ

In many cases it is economically advantageous to
run the environmental tests beyond the bogey life
tBogey, which is in test time terms equivalent to one
mission life. This is often done to reduce the test
sample size while demonstrating the same target
reliability (see Appendix A). In these cases the life
test ratio L given by Eq. (5) is widely used in the
validation cost calculations in lieu of tT.

L ¼
tT

tBogey
. (5)

Maintenance cost per year, including both correc-
tive and preventive maintenance can be calculated as
the total cost of parts and labor multiplied by the
number of maintenance actions per year (Kececioglu,
2002). Therefore the yearly maintenance can be
represented by the following equation:

M ¼
365 days

MTBFEQ
ðtrepairjrepair þ apartsÞ þNPMaPM.

(6)

The presence of a random vector gi reflects the
uncertainty associated with equipment maintenance
information. The cost of corrective maintenance is
not known in advance and can only be estimated
based on the prior history or expected reliability of
the equipment. In a commercial environmental
testing laboratory, the maintenance cost can be a
major source of uncertainty due to incomplete or
missing maintenance records, long storage times in
inventory for spare parts and other maintenance
materials. These effects impact the parameter M

(maintenance cost per year) in Eq. (4) and are
reflected in the statistical parameters gi. To deter-
mine M, a case study was performed based on data
from an automotive validation test laboratory and
its results were utilized in the automotive example in
Section 4 of this paper. In the example, maintenance
data were available only for the last 4 years of
operation and all the missing records were related to
the past 20 years, effectively making it a left-
censored with univariate missing data. It is beyond
the scope of this paper to provide details for those
calculations; however, a summary of the result is
discussed in the example.

3.4. Field return analysis and warranty forecasting

This section discusses Fig. 3 blocks responsible
for the descending portion of the curve in Fig. 2.
Warranty and its associated costs are another
significant contributor to the LCC. At present, it
is difficult for a product developer to have a clear
indication of predicted warranty cost when products
are at the conceptual design level (Nasser et al.,
2002); however, the ability to estimate the warranty
cost with a known uncertainty would provide a
distinct engineering and business advantage.
A forecast of a product warranty often becomes
an important input in the decision-making process
associated with awarding automotive component
business. There exists a multitude of warranty cost
models, many of which are reviewed in Murthy and
Djamaludin (2002).

Most companies maintain some form of warranty
reporting system, in which they collect and analyze
field and test failures. This type of information is
used for the prediction of future field failures and
their expected warranty costs as well as for guiding
design improvements of the current products. Root
cause analysis of automotive electronics warranty
problems at Delphi Corporation shows that the
range of warranty claims contains a large mix of
different types of problems including: (a) initial
performance or quality, (b) manufacturing or assem-
bly related, (c) design-related failure or unacceptable
performance degradation due to applied stresses
(environment, usage, shipping, etc.), (d) service
damage and misdiagnosis, (e) software-related pro-
blems, and (f) others.

The process of warranty forecasting starts with
product specifications, where the main design
characteristics of the product should be defined.
Based on the knowledge of the geometry, utilized
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technology, applications, and other parameters we
can determine the products that are similar to the
product under development. The warranty numbers
for the similar products can be analyzed for failure
rates, trends, statistical distributions, and other
properties. These data can be utilized for the
warranty analysis and prediction.

For free replacement non-renewable warranty
policies, which are very common in the industry, the
expected total warranty cost can be estimated as a
number of units expected to fail multiplied by the
average cost of repair. Assuming that the number of
failed units can be approximated by the number of
units sold multiplied by the cumulative percent
failed, the total warranty cost WC for a renewable
process can be represented as

WC ¼ LðTWÞaWnsold, (7)

where L(t) represents the number of replacements
per unit (see Kaminsky and Krivtsov, 2000), which,
according to Rigdon and Basu (2000), is governed
by the fundamental renewal equation given in (8):

LðtÞ ¼ F ðtÞ þ

Z t

0

Lðt� tÞdF ðtÞ. (8)

However, it is not uncommon in the supplier
industry to model the replacements per unit by the
cumulative distribution function F(t), which is easier
to model than L(t), see for example Lu (1998) or
Majeske (2003). This approximation is suitable for
non-repairable systems and the systems with a low
number of the repeat failures. An analysis of several
automotive electronics products at one of the
Delphi remanufacturing centers showed the number
of parts with repeat failures is below 5% and for
some product lines well under 1%. Therefore, this
approach will be utilized in the case study discussed
in Section 4.

Most of the time, warranty reporting systems and
product validation activities deal with different time
horizons. Product validation is normally intended
to simulate the product mission life tML, which can
be 10–15 years in the automotive industry. How-
ever, warranty usually deals with shorter time
intervals, therefore the current warranty reporting
system does not normally provide enough informa-
tion to evaluate the failure rates corresponding to
the product mission life.

Therefore, the best way to link this model with
reliability at the end of the mission life R(tML) is to
relate the projected numbers to the target reliabil-
ities demonstrated during product validation. This

can be accomplished by using a correction factor
QCorr, linking the predictive model RForecast(tML)
with demonstrated reliability:

RForecastðtMLjxiÞ ¼ QCorrRDemoðtMLjxiÞ. (9)

QCorr in this case is a random variable specific to a
particular product or a product family. Therefore
the calculation of QCorr can be based on the history
for the similar products or early filed return data for
the existing product. In general, terms QCorr reflects
how well the reliability forecasting model correlates
with the demonstrated reliability obtained during
validation testing. The forecasted reliability value
can be obtained using a variety of the available
forecasting techniques (see for example Attardi
et al., 2005; Lu, 1998 or Kleyner and Sandborn,
2005) and in many cases is dependent on a series of
statistical distribution parameters xi utilized in the
prediction model.

Since reliability demonstration values obtained
during product development cycle depend on a test
sample size and test duration (see the case study in
Section 4 and Appendix A), the statistical distribu-
tion parameters xi will depend on validation
parameters N and tT as well as on QCorr:

xi ¼ xiðN; tT;QCorrÞ. (10)

Eq. (9) shows that the demonstrated reliability
would be reflected in product performance in the
field with the forecasted number of warranty claims
becoming a function of demonstrated reliability and
therefore of the test sample size and test duration.

3.5. Stochastic simulation and optimization

Based on Eqs. (4), (6), (9) and (10), the reliability
cost given in Eq. (3) will be a function of test sample
size N and test duration tT in addition to other
parameters. Therefore the target of the optimization
is the reliability cost function Dc(N, tT):

DcðN; tTÞ ¼ apvðN ; tTÞ þ nf ðN; tTÞaW. (11)

In the case of extended life testing given in
Eq. (5), tT will be replaced by L in Eq. (11). Being a
superposition of the ascending and descending
curves, Fig. 2, the objective function will have a
minima point, which is not an extreme. Achieving
that point by managing dependability variables will
provide the desired target value for the LCC.

The formulation thus far has not assumed specific
functional forms for the various distributions that
appear in the model. Section 4 applies the model to
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an automotive electronics case by assuming specific
distributions for the input parameters and perform-
ing a stochastic simulation.

4. Case study

The automotive electronics case study presented
in this section illustrates the methodology developed
in this paper. This case study contains many
similarities to the operation of the design, valida-
tion, and quality functional areas in the Electronics
& Safety Division of Delphi Corporation. The
actual values in this example have been modified
to protect the proprietary nature of the data. This
case study considers an automotive radio with CD
player designed for a mission life of tML ¼ 10 years,
with a total production volume of 500,000 units,
sold to the automotive OEM for $150 each.

Validation cost in this case can be estimated by
applying Eqs. (4) and (6) using the input parameters
presented in Table 1, which comprises the ascending
portion of the curve in Fig. 2.

As mentioned in Section 3.4, the analysis of the
descending portion of the cost curve utilizes
warranty prediction activities. Based on the fact
that a typical automotive part is designed for a
mission life of 10–15 years it would not be expected
to see wear-out failures during either the warranty
or even extended warranty period of 3–7 years,
which is confirmed by the analysis of the failure
rates during the extended warranty, Fig. 4.

The data suggest that in the majority of cases the
warranty failure model is sufficiently represented by

the combination of the infant mortality and useful
life phases of bathtub curve. A detailed study of the
existing warranty of various product lines of
automotive parts performed at Delphi Electronics
& Safety showed a clear trend of diminishing failure
rate for the first 8–18 months followed by a
flattening of the failure rate curve for the remainder
of the time period where warranty and extended
warranty data were available as shown in Fig. 4.

Taking this into account, the choice of the
expected failure probability function was based on
the model in Eq. (12) presented in Kleyner and
Sandborn (2005):

FForecastðtjb; Z; tSÞ ¼ 1� e�ð1þðbðt�tSÞ=tSÞÞðtS=ZÞ
b
; tXtS.

(12)

Therefore, Eq. (9) can be presented as

1� FForecastðtMLjb; Z; tSÞ ¼ QCorrRDemoðtMLÞ. (13)

The common technique of calculating the demon-
strated product reliability is presented in Appendix
A, where RDemo(tML) ¼ R. Therefore substituting
Eq. (18) into Eq. (9) would produce

QCorr ¼
1� F ðtMLjb; Z; tSÞ

ð1� CÞ1=NLb . (14)

Time tS is a change point, the coordinate where
the pattern of data changes requires a different
data-fitting model. Each of the parameters, b, Z, tS is
a random variable and could be represented by a
statistical distribution obtained from the warranty
history of the product.
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Solving Eqs. (9), (10), and (12) for distribution
parameters would provide the functional relationship
between the distribution parameters in Eq. (12) as

Z ¼
tS

½� ln½QCorrRDemoðtMLÞ�=1þ bðtML � tSÞ=tS�
1=b

.

(15)

The choice of the modeling parameters b, Z, and tS
is based the product family and is typically obtained
from the prior warranty history for the family of
products with the similar features. The example
can be an XM-satellite automotive radio with
six CD changer and cassette player. Eq. (15) links
the scale parameter in the warranty model in
Eq. (12), Z with the validation target reliability
RDemo. It has been noticed from the warranty data
analysis that Z fluctuates significantly more than the
shape parameter b. The shape of the warranty
distribution remains reasonably consistent within
the same product line, where the scale parameter
Z is more volatile due to the fact that it is
directly linked with the expected life of the failed
part. Product-specific variable QCorr in Eq. (15) was
generated as one of the random inputs for Monte
Carlo simulation.

The dependability-related portion of the LCC
plays the role of the objective function in the
optimization procedure. A direct search for the
variables C, RDemo, and L was used to minimize the
objective function. Note that C, RDemo are directly
linked to the test sample size N, and L is to test
duration tT, which makes it consistent with both
Eqs. (12) and (14).

The random input variables simulated as prob-
ability distributions are marked ‘‘(random)’’ in
the first column of Tables 1 and 2. The random
inputs used for this model were obtained from
the analysis of the existing automotive data. Good-
ness of fit of the existing data was used to determine
the distribution that best describes the analyzed
data.

As expected, some of the inputs to this stochastic
simulation model were correlated. The analysis
indicates that the cost of the equipment spare parts
and the duration of their corrective maintenance
had the correlation factor r ¼+0.4 (see Fig. 5) and
were simulated as such. Similarly, the data analysis
showed some positive correlation between b and tS.
Based on the available data the correlation between
b and tS was modeled with the correlation factor
r ¼+0.2.

4.1. Simulation results

Each simulation was conducted with 10,000
iterations, which was based on the convergence
characteristics of the simulation. The process
demonstrated 3% convergence with 1000 sample
sets; therefore 10,000 appeared to be sufficient.
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Table 1

Model inputs for the cost of product validation

Input Symbol,

units

Value

Confidence level (search variable) C 80–90%

Target reliability (search variable) RDemo 0.80–1.0

Number of lives tested (search variable) L 1.0–2.0

Depreciation of test chamber D, $/year 25,000

Additional equipment expenses Y, $/year 10,000

Hourly labor rate for equipment

maintenance

jrepair, $/h 35.00

Hourly labor rate for product testing jT, $/h 30.00

Cost: spare parts (random) aparts, $/
year/

chamber

836.21

Time of maintenance repair (random) trepair, h 2.30

Maintenance MTBF, w2-distr (random) Days 313.6

Number of preventive maintenances NPM/year/

chamber

2

Cost of each preventive maintenance aPM, $/

year/

chamber

2000

Maintenance cost (random) M, $/year/

chamber

5067

Test duration (one mission life) tBogey, h 800

Chamber capacity, units K, units 25

Cost of producing one test sample ap, $/unit 2000

Cost of equipping one test sample ae, $/unit 450

Cost of monitoring one test sample amnt, $/unit 500

Table 2

Model inputs for the cost of warranty and service

Input Symbol Value

Production volume n, units 500,000

Mission life tML,

years

10

Failure rate change point (random) tS, days 305.4

Correlation factor: warranty to reliability

(random)

QCorr 0.9

Shape parameter (random) b 0.780

Scale parameter Z, days 101,953

Cost of one warranty claim (random) aW, $/

unit

504.47

Warranty period TW,

days

1095 (3

years)
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Fig. 6 shows the results for a standard bogey
testing (1�mission life, L ¼ 1) and an extended
bogey testing (2�mission lives, L ¼ 2). The entire
simulation result Fig. 6 and the results of the
simulation along with 2-D slice are provided for
C ¼ 90%. The lowest cost data points are circled on
the slice chart. The optimal reliabilities RDemo are in
the range of RDemo [0.95; 0.98]. The minimum value

of LCC was achieved at C ¼ 90%, R ¼ 0.97,
L ¼ 2.0 and equal to $423,696.

4.2. Uncertainty analysis results

An uncertainty analysis was performed to
generate the confidence bounds for the whole
LCC optimization curve. Fig. 7 shows the 725%
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confidence bounds of the solution effectively re-
creating Fig. 2 with the uncertainty intervals. It was
noticed that the confidence bounds are becoming
narrower along as R increases demonstrating that
the uncertainty of the solution is diminishing with
the increasing reliability targets.

This case study demonstrates that the project
management activities can be enhanced by the
application of dependability principals (specifically
reliability and validation) within the product LCC
analysis. The LCC of the product can be minimized
by properly choosing the product validation pro-
gram including test sample sizes, test durations, and
the choice of appropriate reliability targets. Speci-
fically, this case study showed that the lowest value
of LCC can be obtained by pursuing reliability of
97% with 90% confidence, while testing for the
duration of two bogey product lives. As can be seen
from Fig. 7, this LCC is approximately 30% lower
than the cost of pursuing 99% reliability, frequently
requested in the industry.

5. Conclusions

The methodology presented in this work can be
used to evaluate the efficiency of a product
validation program from a life cycle cost point of
view with an emphasis on the cost of validation and
product warranties. This methodology also provides
a basis on which to optimize the environmental
test flow during the product validation, therefore

affecting the overall life cycle cost of the product.
Including product dependability factors into the
business model can potentially help to improve the
project management by minimizing the life cycle
cost of the product. The case study of an
automotive electronics product demonstrated that
common customer requested reliability targets may
not be the most life cycle cost effective requirements.

In this paper, we have not focused on a
determination of the ‘‘best’’ numerical optimization
approach to solving the problem, no doubt more
efficient numerical methods could be brought to
bear on this problem. Rather we were interested in
demonstrating that an optimum can be found. The
emphasis here was made on formulating the
methodology and compiling the model with com-
prehensible inputs and outputs suitable for optimi-
zation by most of the available engineering and
mathematical methods.

Appendix A. Calculating test sample size and test

duration

Reliability demonstration attribute tests intended
to prove that reliability of a product is at or above a
certain level are often conducted by running a
specific number of test samples under conditions
simulating the field environment and for a duration
equivalent to the mission life. Those tests with two
outcomes (pass or fail) are sometimes referred as
‘‘test to a bogey’’. Most of the time, the number of
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the required test samples are determined by the
requested reliability and confidence level and is
based on the binomial distribution (Meeker et al.,
2004). Therefore, the basic relationship between
reliability, confidence level, and the number of test
samples can be expressed as

C ¼ 1�
Xk

i¼0

N!

i!ðN � iÞ!
Rn�ið1� RÞi. (16)

Since reliability demonstration is one of the
parameters that can be controlled by a project
manager during the development process, it is
natural to use it as one of the metrics in quantifying
the expected reliability of the product. Under the
condition of no failures, often referred as Success
Run testing with k ¼ 0, Eq. (16) can be solved for
the test sample size N as

N ¼
lnð1� CÞ

ln R
. (17)

Based on Eq. (17), the demonstration of reliability
R approaching 1.0 requires the sample size N to
approach infinity. For example 90% reliability
demonstrated with 90% confidence would require
22 test samples, where 99.9% reliability with the same
confidence would require the sample size of 2300.

Another factor, which can significantly affect the
test sample size, is test duration. A relationship
between the test sample size and test duration, often
referred as Parametric Binomial or Lipson equality
Lipson and Sheth (1973), allows the substitution of
test samples for an extended test time and visa
versa. This relationship requires the knowledge
about the wear-out mechanism for the particular
failure mode in form of a Weibull slope bT:

C ¼ 1� RNLbT
, (18)

where L is given by Eq. (5). For the case study in
this paper, R ¼ Rdemo(tML), reliability demonstrated
at the end of the mission life. It is important to note
here that Eq. (18) is derived under assumption of
Success Run testing, i.e., no failures are experienced
during the test.
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