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Abstract—Prognostics and Health Management (PHM) provides opportunities for lowering sustainment 

costs, improving maintenance decision-making, and providing product usage feedback into the product 

design and validation process.  However, support for PHM is predicated on the articulation of clear business 

cases that quantify the expected cost and benefits of its implementation.  The realization of PHM requires 

implementation at different levels of scale, and complexity. The maturity, robustness, and applicability of the 

underlying predictive algorithms impact the overall efficacy of PHM within an enterprise. The utility of 

PHM to inform decision-makers within tight scheduling constraints, and under different operational profiles 

likewise affects the cost avoidance that can be realized. This paper discusses the calculation of Return on 

Investment (ROI) for PHM activities, and presents a study conducted using a stochastic discrete event 

simulation model to determine the potential ROI offered by electronics PHM. The case study of a 

multifunctional display in a Boeing 737 compares the life cycle costs of a system employing unscheduled 

maintenance to the same system using a precursor to failure PHM approach. 

 

Index Terms—Avionics, cost modeling, electronics prognostics and health management, prognostics and 

health management, return on investment. 
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CBA Cost Benefit Analysis  
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FAA Federal Aviation Administration 

FMECA Failure Modes, Effects, and Criticality Analysis 

HM Health Monitoring 

JSF Joint Strike Fighter 

LAV Light Armored Vehicle 

LCOM Logistics Composite Model 

LRU Line Replaceable Unit 

MFD Multifunction Display 

MRO Maintenance, Repair, and Overhaul 

NASA National Aeronautics and Space Administration 

OMB Office of Management and Budget 

PHM Prognostics and Health Management 

RUL Remaining Useful Life 

ROI Return On Investment 

SBCT Stryker Brigade Combat Team 

TTF Time To Failure 

 

NOTATION 

β Weibull shape parameter 

Cassembly Cost of assembly and installation of the hardware in each LRU or the cost of assembly of PHM hardware 

for each socket or for each group of sockets 

Cdata Cost of data management, including the costs of data archiving, data collection, data analysis, and data 

reporting 

Cdecision Cost of decision support 

Cdev_hard Cost of hardware development 

Cdev_soft Cost of software development 

                                                                                                                                                                                           
1 The singular and plural of an acronym are always spelled the same.  
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Cdoc Cost of documentation 

Chard_add Cost of PHM hardware added to each LRU (e.g., sensors, chips, extra board area), and may include the 

cost of additional parts or manufacturing, or the cost of hardware for each socket (such as connectors, and 

sensors) 

CINF Infrastructure costs associated with the application and support of PHM 

Cinstall Cost of installation of PHM hardware for each socket or for each group of sockets, which includes the 

original installation, and re-installation upon failure, repair, or diagnostic action 

Cint Cost of integration 

CLRU i  Cost of procuring a new LRU for socket i 

CLRU repair i Cost of repairing an LRU in socket i 

CNRE PHM non-recurring costs 

CPHM  Total life cycle cost of the system employing a particular PHM approach 

Cprognostic maintenance  Cost of maintenance of the prognostic devices 

Cqual Cost of testing, and qualification 

CREC PHM recurring costs 

Cretraining Cost of retraining to educate personnel in the use of PHM 

Csocket i  Life cycle cost of socket i 

Ctest Cost of recurring functional testing of PHM hardware for each socket or for each group of sockets 

Ctraining Cost of training 

Cus   Total life cycle cost of the system when managed using an unscheduled maintenance policy 

d Prognostic distance 

f Fraction of maintenance events on a socket that require replacement of the LRU in the socket with a new 

LRU 

γ Weibull location parameter 

IPHM  Total investment in the PHM approach 

Ius  Total investment in the unscheduled maintenance policy 

η Weibull scale parameter 
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r Discount rate 

t Year of event (t = 0 corresponds to 2008) 

t1 TTF distribution sample 

Trepair i  Time to repair the LRU in socket i 

Treplace i  Time to replace the LRU in socket i 

V  Value of time out of service 
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I. INTRODUCTION 

All Prognostics and Health Management (PHM) approaches are essentially the extrapolation of trends based on 

recent observations to estimate Remaining Useful Life (RUL) [1].  The value obtained from PHM can take the form 

of advanced warning of failures; increased availability through extensions of maintenance cycles or timely repair 

actions; lower life cycle costs of equipment from reductions in inspection costs, downtime, inventory, and no-fault-

founds; or the improvement of system qualification, design, and logistical support of fielded and future systems [2].  

Proposals to adopt PHM approaches are often articulated in the form of business cases; an economic justification is 

the cornerstone of a persuasive case. Return on Investment (ROI) is a useful means of gauging the economic merits 

of adopting PHM.   

The determination of the ROI allows managers to include quantitative, readily interpretable results in their 

decision-making.  ROI analysis may be used to select between different types of PHM, to optimize the use of a 

particular PHM approach, or to determine whether to adopt PHM versus more traditional maintenance approaches. 

The economic justification of PHM has been discussed by many authors [3]-[21]. Although the existing PHM 

ROI assessments described in this section contain valuable insight into the cost drivers, most PHM cost analyses 

and cost-benefit analyses are application-specific; in most cases, they do not provide a general modeling framework 

or consistent process with which to evaluate the application of PHM to a system.  Furthermore, existing approaches 

provide primarily ‘point estimates’ of the value based on a set of fixed inputs when, in reality, many of the critical 

inputs are uncertain.  Accommodating the uncertainties in the PHM ROI calculation is at the heart of developing 

realistic business cases that address prognostic requirements.  Finally, for many types of systems, the value of PHM 

is realized through the changes it enables in the ability to maintain the system. While the models in [3]-[20] all 

contain cost factors associated with maintenance, most neither simulate nor emulate the maintenance process.  The 

work described in this paper is based on modeling PHM within the maintenance planning tool described in [21], 

using a detailed treatment of the maintenance process to gain a more accurate understanding of the true value of 

PHM. 

The ROI associated with PHM approaches has been examined for specific non-electronic military applications, 

including ground vehicles, power supplies, and engine monitors [3]-[5]. NASA studies indicate that the ROI of 
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prognostics in aircraft structures may be as high as 0.58 in 3 years for contemporary and older generation aircraft 

systems assuming a 35% reduction in maintenance requirements [6].  Simple ROI analyses of electronic prognostics 

for high reliability telecommunications applications (power supplies, and power converters) have been conducted, 

including a basic business case for the BladeSwitch voice telecommunications deployment in Malaysia [7]. 

ROI predictions of the costs of PHM implementation, and the potential for cost avoidance have been evaluated; 

and an analysis of PHM for JSF aircraft engines was developed using a methodology that employed Failure Modes, 

Effects, and Criticality Analysis (FMECA) to model hardware [8], [9].  Byer et al. [10], and Leao et al. [11] 

describe processes for conducting a cost-benefit analysis for prognostics applied to aircraft subsystems. 

The cost-benefit analysis of PHM for batteries within ground combat vehicles was modeled using the Army 

Research Laboratory’s Trade Space Visualizer software tool [12].  Banks & Merenich [12] found that ROI was 

maximized when the time horizon (the prognostic distance) was greatest, and when the number of vehicles and the 

failure rates were largest.  A comparison of the ROI of prognostics for two types of military ground vehicle 

platforms was performed using data from Pennsylvania State University’s battery prognostics program [13]. Non-

recurring development costs were estimated for the prognostic units developed for the batteries of the Light 

Armored Vehicle (LAV), and the Stryker platform used in the Stryker Brigade Combat Team (SBCT) family of 

vehicles. ROI was calculated as 0.84 for the LAV, and 4.61 for the SBCT based on estimates of the development 

and implementation costs.  When combined with existing data about battery performance across the Department of 

Defense (DoD), the total ROI of battery prognostics for the DoD was calculated as 15.25 over a 25-year period. 

The Boeing Company developed a life cycle cost model for evaluating the benefits of prognostics for the Joint 

Strike Fighter program. The model was developed by Boeing’s Phantom Works division to enable cost-benefit 

analysis of prognostics for the fighter’s avionics during system demonstration, and then enhanced to permit life 

cycle cost assessment of prognostic approaches [14]. Cost influencing parameters, in addition to economic factors, 

were incorporated into a cost benefit analysis [15].  
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II. PROPOSED METHODOLOGY OF RETURN ON INVESTMENT (ROI) CALCULATION 

In general, ROI is the ratio of gain to investment. Equation (1) is a way of defining ROI over a system’s life 

cycle. 

 

 
Investment

InvestmentReturn ROI −
= 1 

−=
Investment

CostAvoided  (1) 

 

The central ratio in (1) is the classical ROI definition, and the ratio on the right is the form of ROI that is 

applicable to PHM assessment.  In the case of PHM, the investment includes all the costs necessary to develop, 

install, and support a PHM approach in a system; while the avoided cost is a quantification of the benefit realized 

through the use of a PHM approach.  Note that not all researchers that quote ROI numbers for the application of 

PHM to systems define ROI in the same way; therefore, published ROI may not be directly comparable in all cases.  

Equation (1) is the standard definition used by the financial world for ROI. 

Viable business cases for PHM do not necessarily require that the ROI be greater than zero. ROI > 0, implies 

that there is a cost benefit.  In some cases, the value of PHM is not directly quantifiable in monetary terms, but is 

necessary in order to meet a system requirement that could not otherwise be attained, e.g., an availability 

requirement.  However, the evaluation of ROI (whether greater than or less than zero) is still a necessary part of any 

business case developed for PHM [22].  

For PHM, ROI must be measured relative to whatever methodology is currently used to manage the system.  

For electronic systems, a common management approach is unscheduled maintenance. Following an unscheduled 

maintenance policy, systems are operated until failure, and are then repaired or replaced.  Applying (1) to measure 

ROI relative to unscheduled maintenance gives 

 ( ) ( )
( ) 1−

−
−−−

=
usPHM

PHMPHMusus

II
ICIC

 ROI  (2) 

In our case, we define Ius = 0, i.e., the investment cost in unscheduled maintenance is indexed to zero by definition.  

This does not imply that the cost of performing maintenance in the unscheduled case is zero (the cost of performing 
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maintenance is part of Cus), but reflects that a maintenance approach relying purely on unscheduled maintenance 

makes no investment in PHM.  Setting Ius = 0, then (2) becomes 

 ( )
1−

−−
=

PHM

PHMPHMus

I
ICC

 ROI  (3) 

Equation (3) measures ROI of a PHM approach relative to unscheduled maintenance; if CPHM  is equal to Cus, then 

ROI equals 0, the breakeven point.2 

The investment cost is the effective cost per socket3 of implementing PHM, and then using the knowledge it 

creates to guide maintenance actions, and planning. The PHM investment cost is calculated as 

 INFRECNREPHM CCCI ++=  (4) 

The costs of false alarm resolution, procurement of a different quantity of LRU than the number required by an 

unscheduled maintenance approach, and maintenance costs that differ from unscheduled maintenance are not 

included in the investment cost because they are the result of the investment, and are reflected in CPHM.  CPHM must 

also include the cost of money differences associated with purchasing LRU at maintenance events between 

unscheduled maintenance, and a PHM approach; i.e., even if both approaches end up purchasing the same number 

of replacement LRU for a socket, they may purchase them at different points in time resulting in different effective 

costs if the discount rate is non-zero.  If replacement LRU are drawn from an inventory of spares (as opposed to 

purchased as needed), then there may be no cost of money impact on ROI associated with the procurement of 

spares. 

The ROI in (3) can be calculated statically using values of Cus, CPHM, and IPHM that are averaged over an entire 

population of sockets.  However, in reality, a population of sockets will result in a distribution of ROI (every socket  

potentially having a different ROI).  To calculate the distribution of ROI, each member of the population has to be 

independently tracked through its lifetime assuming first an unscheduled maintenance policy, and then assuming a 

PHM maintenance approach (using identical samples from the distributions that represent the member’s 

 
2 Equation (3) is only valid for comparison of ROI to unscheduled maintenance, which is a convenient well defined solution 
from which to measure ROI.  Using (3), one can compare the relative ROI of multiple PHM approaches measured from 
unscheduled maintenance; however, the ROI of one PHM approach relative to another is not given by the difference between 
their ROI relative to unscheduled maintenance.  To evaluate ROI relative to a baseline other than unscheduled maintenance, 
appropriate values of Avoided Cost and Investment must be substituted into (1). 
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characteristics and maintenance costs in a Monte Carlo analysis). In this manner, a separate ROI is calculated for 

each member of the population.  When the process is repeated on an entire population of sockets, a histogram of 

ROI is generated from which business case parameters can be extracted.  For the example in Fig. 7 (discussed later), 

assuming that the estimation of the uncertainties in the input parameters is reasonable, the case study in Section IV 

indicates that we can have 80% confidence that the ROI is greater than 3.12.  

III. PHM COSTS 

The two major categories of cost-contributing activities that must be considered in an analysis of the ROI of 

PHM are implementation costs, and cost avoidance. These categories represent the ‘Investment’ portion, and the 

‘Avoided Cost’ portion of the ROI calculation in (1) respectively. 

 

A. Implementation Costs 

Implementation costs are the costs associated with the realization of PHM in a system, the technologies and 

support necessary to integrate and incorporate PHM into new or existing systems. The costs of implementing PHM 

can be categorized as recurring, non-recurring, or infrastructural depending on the frequency, and role of the 

corresponding activities.  The implementation cost is the cost of enabling the determination of Remaining Useful 

Life (RUL) for the system.  

Non-recurring costs are associated with one-time only activities that typically occur at the beginning of the 

timeline of a PHM program, although disposal or recycling non-recurring costs would occur at the end. Non-

recurring costs can be calculated on a per-LRU, per-socket, or per a group of LRU or sockets basis.  The specific 

non-recurring cost is calculated as 

 qualdoctrainingdev_softdev_hardNRE CCCCCCC +++++= int  (5) 

Recurring costs are associated with activities that occur continuously or regularly during the PHM program. As 

with non-recurring costs, some of these costs can be viewed as an additional charge for each instance of a LRU, or 

for each socket (or for a group of LRU or sockets).  The recurring cost is calculated as 

                                                                                                                                                                                           
3 A socket is a unique instance of an installation location for an LRU.  One instance of a socket occupied by an engine controller 
is its location on a particular engine. The socket may be occupied by a single LRU during its lifetime (if the LRU never fails), or 
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 installtestassemblyhard_addREC CCCC C +++=  (6) 

Unlike recurring and non-recurring costs, infrastructure costs are associated with the support features and 

structures necessary to sustain PHM over a given activity period, and are characterized in terms of the ratio of 

money to a period of activity (i.e., dollars per operational hour, dollars per mission, dollars per year). The 

infrastructure costs are calculated as 

 CINF = Cprognostic maintenance + Cdecision + Cretraining + Cdata (7) 

 

B. Cost Avoidance 

Prognostics provide estimations of Remaining Useful Life (RUL) in terms that are useful to the maintenance 

decision making process.  The decision process can be tactical (real-time interpretation and feedback), or strategic 

(maintenance planning, or feedback into the product design or verification process).  Unfortunately, the calculation 

of RUL alone does not provide sufficient information to form a decision, or to determine corrective action.  

Determining the best course of action requires the evaluation of criteria such as availability, reliability, 

maintainability, and life cycle cost.  Cost avoidance is the value of changes to availability, reliability, 

maintainability, and failure avoidance.  

The primary opportunities for obtaining cost avoidance from the application of PHM to systems are failure 

avoidance, and minimization of the loss of remaining system life.  Field failure of systems is often very expensive.  

If all or some fraction of the field failures can be avoided, then cost avoidance may be realized by minimizing the 

frequency of unscheduled maintenance.  Avoidance of failures can increase availability, reduce the risk of loss of 

the system, and may increase human safety depending on the type of system considered.  Failures avoided fall into 

two types: 1) real-time failure avoidance during operation that would otherwise result in the loss of the system or 

loss of the function that the system was performing (i.e., loss of mission), and 2) warning of future (but not 

imminent) failure that allows preventative maintenance to be performed at a convenient place and time.  

 

                                                                                                                                                                                           
multiple LRU if one or more LRU fail, and needs to be replaced. 
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C. Maintenance Planning Cost Model 

Interpretation of RUL results from PHM activities is a decision making under uncertainty problem.  Without 

comprehending the corresponding measures of the uncertainty associated with the calculation, RUL projections 

have little practical value, [1].  To perform effective maintenance planning, and calculate corresponding life cycle 

costs, we must use a method that includes data uncertainties.  We use a stochastic discrete event simulation model 

[21] to compute the total life cycle cost of sockets when unscheduled, and PHM management approaches are used; 

i.e., we compute Cus and CPHM in (3).  The model follows the history of a single socket (or a group of sockets) from 

time zero to the end of support life for the system. To generate meaningful results, a s-relevant number of sockets 

(or systems of sockets) are modeled, and the resulting cost and other metrics are generated in the form of 

histograms.  The model treats all inputs to the discrete event simulation as probability distributions, i.e., a stochastic 

analysis is used, implemented as a Monte Carlo simulation. Various maintenance interval and PHM approaches are 

distinguished by how sampled TTF values are used to model PHM RUL forecasting distributions. 

The case study in this paper focuses on a Precursor to Failure PHM approach, and includes maintenance 

planning model details for this PHM approach. The treatment of other PHM approaches appears in detail in [21]. 

Precursor to failure monitoring employs fuses or other monitored structures that are manufactured with or within the 

LRU, or as monitored precursor variables representing non-reversible physical processes, i.e., they are coupled to 

the manufacturing, material, or assembly variations of a particular LRU. Health Monitoring (HM), and LRU-

dependent fuses are examples of precursor to failure methods. A parameter to be determined from the analysis is the 

prognostic distance. The prognostic distance is a measure of how long before system failure the prognostic 

structures or prognostic cell is expected to indicate failure. The precursor to failure monitoring methodology 

forecasts a unique time to failure (TTF) distribution for each instance of an LRU based on the instance’s TTF.4 For 

illustration purposes, the precursor to failure monitoring forecast is represented as a symmetric triangular 

distribution with a most likely value (mode) set to the TTF of the LRU instance, minus the prognostic distance, Fig. 

1.5 

 
4 In this model, all failing LRU are assumed to be maintained via replacement or good-as-new repair. Therefore, the time 
between failure, and the time to failure are the same. 
5 Luna [23] has suggested a generalization of the model used in [21], and describes its possible implementation within the 
Logistics Composite Model (LCOM) developed for the Air Force, [24].  Similar to the model in [21], LCOM is a discrete event 
simulation based operation and maintenance models. 
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The LRU TTF probability density function (pdf), and the precursor to failure TTF pdf on the left, and right 

sides of Fig. 1, respectively, could have different distribution shapes and parameters; symmetric triangular 

distributions were chosen for illustration. The precursor to failure monitoring distribution has a fixed width 

measured in the relevant environmental stress units (e.g., operational hours in our example) representing the 

probability of the prognostic structure indicating the precursor to a failure. As a simple example, if the prognostic 

structure was a LRU-dependent fuse that was designed to fail at some prognostic distance earlier than the system it 

protects, then the distribution on the right side of Fig. 1 represents the distribution of fuse failures (the TTF 

distribution of the fuse).  

The model proceeds in the following way: for each LRU TTF distribution sample (t1) taken from the left side of 

Fig. 1, a precursor to failure monitoring TTF distribution is created that is centered on the LRU TTF minus the 

prognostic distance (t1-d). The precursor to failure monitoring TTF distribution is then sampled, and if the precursor 

to failure monitoring TTF sample is less than the actual TTF of the LRU instance, the precursor to failure 

monitoring is deemed successful. If the precursor to failure monitoring distribution TTF sample is greater than the 

actual TTF of the LRU instance, then precursor to failure monitoring was unsuccessful. If successful, a scheduled 

maintenance activity is performed, and the timeline for the socket is incremented by the precursor to failure 

monitoring sampled TTF. If unsuccessful, an unscheduled maintenance activity is performed, and the timeline for 

the socket is incremented by the actual TTF of the LRU instance. At each maintenance activity, the relevant costs 

are accumulated. 

The scheduled, and unscheduled costs computed for the sockets at each maintenance event are given by 

 Vf)T(+VfT+f)C(+fC=C irepairireplaceirepairLRUiLRUisocket −− 11
 

   (8) 

Note that the values of f, and V generally differ depending on whether the maintenance activity is scheduled or 

unscheduled. For simplicity, (8) is written assuming that the quantity of replaced LRU in socket i is one; however, 

the socket could receive multiple LRU during its lifetime. 

 As the discrete event simulation tracks the actions that affect a particular socket during its life cycle, the 

implementation costs are charged at the appropriate times, as shown in Fig. 2. At the beginning of the life cycle, the 

non-recurring cost is applied. The recurring costs at the LRU level, and at the system level are first applied at the 

start of the analysis; and, assuming spares are procured as needed, they are subsequently applied at each 
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maintenance event that requires replacement of an LRU (CLRU i, as in (8)). The recurring LRU-level costs include 

the base cost of the LRU regardless of the maintenance approach. Discrete event simulations that compare 

alternative maintenance approaches to determine the ROI of PHM must include the base cost of the LRU itself 

without any PHM-specific hardware. If discrete event simulation is used to calculate the life cycle cost for a socket 

under an unscheduled maintenance policy, then the recurring LRU-level cost is reduced to the cost of replacing or 

repairing an LRU upon failure. Under a policy involving PHM, the failure of an LRU results in additional costs for 

the hardware, assembly, and installation of the components used to perform PHM. The infrastructure costs are 

distributed over the socket’s life cycle. 

The maintenance planning simulation can be performed assuming that spares can be purchased as needed, or 

that spares reside in an inventory.  The spares inventory model includes the purchase of an initial quantity of spares 

(the purchase is assumed to happen at the start of the simulation), and an inventory carrying cost is assessed per year 

based on the number of spares that reside in the inventory at the beginning of the year.  When the number of spares 

in the inventory drops below a user defined threshold, additional spares are automatically purchased, and become 

available in the inventory for use after a user definable lead-time.  Cost of money is assessed on all spares 

purchases, inventory, and replenishment activities. 

IV. CASE STUDY 

The scenario for this business case example considers the acquisition of a precursor to failure PHM approach 

for an avionics LRU in a commercial aircraft used by a major commercial airline.  The representative LRU is a 

multifunction display (MFD), two of which are present in each aircraft. A fleet size of 502 aircraft was chosen to 

reflect the quantities involved for a technology acquisition by a major airline, in this case, Southwest Airlines [25].  

The Boeing 737-300 series was chosen as the representative aircraft to be equipped with electronics PHM.  A 

preliminary version of this case study appeared in [26]. 

The implementation costs reflect a composite of technology acquisition cost benefit analyses (CBA) for aircraft, 

and/or for prognostics. The implementation costs are summarized in Table I. All values are in 2008 U.S. dollars; all 

conversions to year 2008 dollars were performed using the Office of Management and Budget (OMB) discount rate 
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of 7% [27]. The discount factor was calculated as 1/(1 + r)t, where r is the discount rate (0.07), and t is the year (t = 

0 represents 2008). 

Maintenance costs vary greatly depending on the type of aircraft, the airline, the amount and extent of 

maintenance needed, the age of the aircraft, the skill of the labor base, and the location of the maintenance 

(domestic versus international, hangar versus special facility). The maintenance costs in the model are assumed to 

be fixed; however, the effects of aging are known to increase maintenance costs [28].  

Koch, et al. [29] give the maintenance cost per hour for Boeing 737-100 and -200 series aircraft as 12% of the 

hourly operating cost, noting that the ratio of maintenance costs per hour to aircraft operating costs per hour has 

remained between 0.08, and 0.13 since the 1970s. The numerical average of the direct hourly operating costs for 

major airlines summarized in [30] was used. This cost is treated as the cost of scheduled maintenance per hour, 

which is equivalent to the cost of unscheduled maintenance that can be performed during the downtime period (see 

Table II) after the flight segments for the day have been completed. 

The cost of unforeseen failures that require immediate attention during a flight can vary depending on the 

interpretation, and on the subsequent actions required to correct the problem. Unscheduled maintenance that would 

require a diversion of a flight can be extremely expensive. The cost of a problem requiring unscheduled 

maintenance that is detected before the aircraft has left the ground (during a flight segment but not airborne) can be 

highly complex to model if the full value of passenger delay time, and the downstream factors of loss of reputation 

and indirect costs are included [31]. 

For the determination of the cost of unscheduled maintenance during a flight segment, we assume that such an 

action typically warrants a flight cancellation. This represents a more extreme scenario than a delay; the model 

assumes that unscheduled maintenance that occurs between flight segments (during the preparation and turnaround 

time) would be more likely to cause a delay, whereas unscheduled maintenance during a flight segment would result 

in a cancellation of the flight itself. The Federal Aviation Administration (FAA) provides average estimates of the 

cost of cancelled flights on commercial passenger aircraft based on direct operating costs per minute [32]. 

The operational profile for this example case was determined by gathering information for the flight frequency 

of a typical commercial aircraft. A large aircraft is typically flown several times each day; these individual journeys 

are known as flight segments. The average number of flight segments for a Southwest Airlines aircraft was seven in 
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2007 [25]. Although major maintenance, repair, and overhaul operations (MRO) call for lengthy periods of 

extensive inspections and upgrades as part of mandatory maintenance checks, a commercial aircraft may be 

expected to be operational up to 90% to 95% of the time for a given year [33]. A median airborne time for 

commercial domestic flights was approximately 125 minutes in 2001 [27]. A representative support life of 20 years 

was chosen based on [27]. A 45-minute turnaround time was taken as the time between flights based on the industry 

average [34]. Using this information, an operational profile was constructed whose details are summarized in Tables 

II, and III. 

Table IV summarizes the spares inventory assumptions made for the maintenance model.  As an alternative, 

results are also provided in this section for the assumption that replacement spares can be acquired, and paid for as 

needed (no spares inventory, and no lead-time for obtaining replenishment spares, i.e., all costs associated with 

maintaining an inventory of spares are assumed to be incorporated into the LRU recurring cost). 

Reliability data were based on [35], and [36], which provide models of the reliability of avionics with 

exponential, and Weibull distributions, commonly used to model avionics [37].  The assumed TTF distribution of 

the LRU is provided on the left side of Fig. 3 (i.e., ‘TTF 1’).  In an analysis of over 20,000 electronic products built 

in the 1980s and 1990s, [38] shows that Weibull distributions with shape parameters close to 1, i.e., close to the 

exponential distribution, are the most appropriate Weibull distributions for modeling avionics.  Upadhya & 

Srinivasan [39] model the reliability of avionics with a Weibull shape parameter of 1.1, consistent with the common 

range of parameters found in [38].  Although [38] found exponential distributions to be the most accurate, failure 

mechanisms associated with current technologies suggest that the Weibull may prove to be more representative for 

future generations of electronic products [40]. The location parameter was chosen based on the typical avionics unit 

being considerably shorter-lived than the ten-year lifespan commonly used within the aerospace industry [38].  The 

right side of Fig. 3 (‘TTF 2’) provides an alternative TTF distribution that was used for comparison. 

 

A. ROI Analysis 

In this section, the ROI of a precursor to failure PHM approach relative to unscheduled maintenance is 

analyzed for four cases: with, and without a spares inventory for each of the two different TTF distribution 

assumptions (TTF 1, and TTF 2) as shown in Fig. 3.  The cases without spares inventories correspond to the 
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assumption that spares are purchased and available to be procured without delay whenever they are needed.  Only a 

precursor to failure PHM approach is considered in this case study.  

To enable the calculation of ROI, an analysis proceeds along the steps shown in Fig. 4.  The results of the 

analysis to determine the optimal prognostic distance when using precursor to failure PHM for the example case are 

shown in Fig. 5. Small prognostics distances cause PHM to miss failures, while large distances are overly 

conservative.  For the combination of PHM approach, implementation costs, reliability information, and operational 

profile assumed in this example, a prognostic distance of 470 hours for TTF 1 yielded the minimum life cycle cost 

over the support life. A symmetric triangular distribution with a width of 500 hours was assumed for the TTF 

distribution of the prognostic structure that was monitored with the precursor to failure approach (the right side of 

Fig. 1).  Similarly, the optimum prognostic distance using TTF 2 was 500 hours.  Note that a 12 month lead time for 

spare replenishment (as defined in Table IV) was assumed in Figs. 5-8. 

Using prognostic distances of 470 and 500 hours, a discrete event simulation was performed under the 

assumptions of negligible random failure rates, and false alarm indications. Fig. 6 illustrates the cumulative cost per 

socket as a function of time. The graph of life cycle cost intersects the ordinate axis at the point corresponding to the 

initial implementation cost (including the initial spares inventory if applicable); as maintenance events accumulate 

over the support life, the cost rises, culminating at the end of the 20 years. For the case where LRU can be procured 

as needed (i.e., no spares inventory, the left side of Fig. 6), each socket required a replacement of five LRU on 

average, corresponding to the distinct steps in cost every ~3.8 years. The small step increases between LRU 

replacements (most clearly seen between year 0, and year 3) represent annual PHM infrastructure costs.  For this 

case study, 1,000 sockets were simulated; divergence in life cycle cost due to randomness and variability of 

parameters can be seen as the support life progresses.  When a spares inventory (defined in Table IV) is assumed 

(on the right side of Fig. 6), the threshold for spare replenishment is reached between years 11 and 13, resulting in 

the purchase of 2 additional spares per socket. This result corresponds to the single large step appearing in the plot 

on the right side of Fig. 6; the initial cost is larger than that on the left because of the cost of the initial spares 

inventory. 

Using the PHM approach, 99% of the failures were avoided for both the no spares inventory, and spares 
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inventory cases respectively.6 The total life cycle cost per socket was CPHM = $77,338 in the no spares inventory 

case, and $234,587 when a spares inventory was included, with effective investment costs per socket of IPHM = 

$5,576, and $5,969 respectively, representing the cost of developing, supporting, and installing PHM. This cost was 

compared to an unscheduled maintenance policy in which LRU are fixed or replaced only upon failure. Using 

identical simulation inputs (except for the inputs particular to the PHM approach), the life cycle cost per socket 

under an unscheduled maintenance approach was Cus = $96,636. Following (3), the ROI of PHM was calculated as 

[$96,636 – ($77,338 – $5,576]/$5,576  – 1, approximately 3.46.  The values used here represent the means of each 

quantity over the entire population of sockets; however, the simulation yields a distribution of ROI (see Section II).  

Fig. 7 shows the distribution or ROI corresponding to the baseline case (TTF 1 with the data provided in Tables I-

IV). 

Fig. 8 shows the variation of the ROI with the annual infrastructure cost of implementing PHM on a per-socket 

basis, including the costs of hardware, assembly, installation, and functional testing. The ROI plotted in Fig. 8 are 

the means of the ROI distribution generated for each analysis point.  A larger breakeven cost corresponds to paying 

more on an annual basis for PHM while continuing to derive economic value as compared to unscheduled 

maintenance.  The breakeven cost is larger when TTF 2 is assumed to be due to the fact that failures are spread over 

a wider time period.  The larger ROI magnitudes evident when TTF 2 is assumed, and a spares inventory is used, 

are driven by the assumed 12 month lead time for spare replenishment.  For a 12 month lead time when TTF 2 is 

assumed, the system availability decreases significantly for the unscheduled maintenance case as shown in Fig. 9.  

This results in an increase in the life cycle cost associated with the unscheduled case (Cus), and thereby an increased 

ROI when PHM is used.  The PHM, and TTF 1 solutions reflect a minimal impact on availability because very few 

sockets deplete the initial spares inventory. 

The example provided in this section demonstrates the conditions under which a positive ROI can be obtained 

using a precursor to failure PHM approach.  For the TTF 1 time-to-failure distribution assumed in Fig. 3, potentially 

smaller life cycle costs may be possible using a fixed schedule maintenance interval (see Table V).  However, for 

 
6 Sockets with LRU failures not detected by the PHM approach appear in left side of Fig. 6 as the histories above the majority of 
the data set (appearing first at approximately 4 years).  These sockets incur unscheduled maintenance events that have 
significantly higher costs.  
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TTF 2, which distributes failures over a much larger range of times, fixed interval maintenance is preferable to 

unscheduled maintenance but does not perform as well as the PHM approach.  

 

V. SUMMARY, AND CONCLUSION 

PHM is a promising technology that can be used within the maintenance decision-making process to provide 

failure predictions, to lower sustainment costs by reducing the costs of downtime, to improve inspection and 

inventory management, to lengthen the intervals between maintenance actions, and to increase the operational 

availability of systems. PHM can be used in the product design and development process to gather usage 

information, and to provide feedback for future generations of products.   

A business case was presented that demonstrated a positive ROI for adopting PHM based on Monte Carlo 

simulations that accounted for uncertainties in both the performance of the PHM approach, and the various costs 

involved in the calculation. PHM would likely be used to maintain groups of dissimilar LRU within a larger system 

requiring an expanded analysis to include reliability, age, and cost information for multiple components. 

Furthermore, the results presented here are specific to a precursor to failure PHM approach; they may not be 

consistent with the ROI of using life consumption monitoring methods (LRU independent methods), and are not 

specific to a particular precursor to failure device.  

The model used in this paper does not address the total impact of PHM that would be experienced at the system 

level, such as the time needed for the maintenance and logistics communities to fully adapt to PHM.  For example, 

the costs of the necessary cultural changes in the maintenance community are not included, and are difficult to 

quantify.  In addition, there may be quantifiable costs associated with availability changes that result from the 

inclusion of PHM that are not included in the model. Although the model in [21] can incorporate false alarms, and 

failures that are outside the scope of the PHM approach, they were not considered in this business case example. 

To determine the ROI requires an analysis of the cost-contributing activities needed to implement PHM, and a 

comparison of the costs of maintenance actions with, and without PHM. Analysis of the uncertainties in the ROI 

calculation is necessary for developing realistic business cases. The inclusion of variability in the operational 
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profile, false alarm, random failure rates, and system complexity in PHM ROI models enables a more 

comprehensive treatment of PHM to support acquisition decision making. 
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Figure Captions 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Precursor to failure monitoring modeling approach (triangular distributions are used for illustration purposes) 
from [21]. 
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Fig. 2. Temporal ordering of implementation cost inclusion in the discrete event simulation (this figure assumes that 
spares are procured as needed).     
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Fig. 3. Weibull distribution of TTF:  Left (TTF 1): β=1.1 [36], η= 1,200 [34], and γ = 25,000 hours; Right (TTF 2): 
β=3, η= 25,000, and γ = 0.   
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Fig. 4. Process flow chart for analyzing the ROI of a precursor to failure PHM approach relative to unscheduled 
maintenance. 
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Fig. 5. Variation of life cycle cost with precursor to failure PHM prognostic distance (5000 LRU sampled).  The left 
,and right variations correspond to the TTF 1 distribution on the left side of Fig. 3, and the TTF 2 distribution on the 
right side of Fig. 3, respectively.   
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Fig. 6. Socket cost histories over the system support life (5000 LRU sampled).  These graphs correspond to the TTF  
1 distribution on the left side of Fig. 3. 
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Fig. 7. Histogram of ROI for a 5000 socket population. 
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Fig. 8. Mean ROI as a function of the annual infrastructure cost of PHM per LRU (5000 LRU sampled). 
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Fig. 9. System availability associated with unscheduled. and PHM maintenance approaches (5000 LRU sampled).  
Note a 12 month lead time for spare replenishment (as defined in Table IV) was assumed in Figs. 5-8. 
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Table I 
Implementation Costs  

Frequency Type Value 

Recurring Costs 
Base cost of an 

LRU 
(without PHM) 

$25,000 per 
LRU 

Recurring Costs Recurring PHM 
cost 

$155 per LRU 
$90 per socket 

(CREC) 

Recurring Costs Annual 
Infrastructure 

$450 per socket 
(CINF) 

Non-Recurring 
Engineering PHM cost $700 per LRU 

(CNRE) 
 

Table II 
Unscheduled Maintenance Costs  

Maintenance Event Probability Value (V) 
Before mission 

(during preparation) 0.19 $2,880/hour 

Maintenance event 
during mission 0.61 

$5,092/hour 
(mean of range 

in [32]) 
Maintenance event after 

mission 
(during downtime) 

0.20 $500/hour 

 

Table III 
Operational Profile 

Factor Multiplier Total 
Support life: 20 

years 
2,429 flights per 

year  
48,580 flights 

over support life 

7 flights per day 125 minutes per 
flight 

875 minutes in 
flight per day 

45 minutes 
turnaround 

between flights 
[34] 

6  preparation 
periods per day 

(between flights) 

270 minutes 
between 

flights/day 
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Table IV 
Spares Inventory 

Factor Quantity 
Initial spares purchased for 

each socket 4 

Threshold for spare 
replenishment 

< 2 spares in the inventory 
per socket 

Number of spares to purchase 
per socket at replenishment 2 

Spare replenishment lead time 12 months 

Spares carrying cost 10% of the beginning of year 
inventory value per year 

 

Table V 
Comparison of Total Life Cycle Costs per Socket for Various Maintenance Approaches 

 Mean Unscheduled 
Maintenance Life Cycle 

Cost per Socket 

Mean Precursor to 
Failure PHM Life 

Cycle Cost per Socket1 

Mean Fixed Interval 
Life Cycle Cost per 

Socket2 
TTF 1, no spares 
inventory 

$96,636 $77,338 $72,752 

TTF 2, no spares 
inventory 

$124,837 $96,861 $118,440 

TTF 1, with spares 
inventory3 

$231,012 $233,587 $227,628 

TTF 2, with spares 
inventory3 

$1,531,428 $267,464 $1,437,004 

All cases correspond to an annual infrastructure cost = $450 per socket. All costs are mean costs from 5000 
samples. 
1All cases correspond to the lowest cost prognostic distance. 
2All cases correspond to the lowest cost fixed maintenance interval. 
3All cases correspond to initial spares = 5, threshold for spare replenishment = 2, spares to purchase at 
replenishment = 2, lead time = 12 months, carrying cost = 10% of the beginning of year inventory value per year. 
 


