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ABSTRACT 

This paper presents a test, diagnosis, and rework analysis 
model for use in manufacturing process modeling. The 
approach includes a model of functional test operations 
characterized by fault coverage, false positives, and defects 
introduced in test, in addition to rework and diagnosis 
(diagnostic test) operations that have variable success rates 
and their own defect introduction mechanisms.  The model 
accommodates multiple rework attempts on a product instance.   

The model is applied within a framework for optimizing the 
location(s) and characteristics (fault coverage/test cost, rework 
success rate/rework cost) of Test/Diagnosis/Rework (TDR) 
operations in a general manufacturing process. A new search 
algorithm called Waiting Sequence Search (WSS) is applied to 
traverse a general process flow to perform the cumulative 
calculation of a yielded cost objective function. Real-Coded 
Genetic Algorithms (RCGAs) are used to perform a multi-
objective optimization that minimizes yielded cost.  An example 
of a general complex process flow is used to demonstrate the 
feasibility of the algorithm.   
 

Keywords – Test economics; Test; Diagnosis; Rework; 
Cost modeling; Electronic systems. 

INTRODUCTION 
At a fundamental level, system design is a tradeoff analysis 

activity. This tradeoff includes factors such as size and 
performance, but often the most important factor in the tradeoff 
is cost. The various recurring costs that affect the manufacture 

of a system are the fabrication/assembly cost, test/inspection1 
cost, rework cost, and waste disposition cost.    

For many types of systems, functional test is an important 
driver that significantly affects the total cost of manufacturing.  
In electronic systems, for example, it is not uncommon that 
greater than 60% of a product’s recurring cost can be attributed 
to testing (Turino 1990), for integrated circuits, recurring 
testing costs are approaching 50% of the total product cost 
(Rhines 2002).  When the products that result from a 
manufacturing process are imperfect, four costs are potentially 
involved, first the cost of determining whether a given instance 
of the product is good or bad (recurring functional testing), 
second the cost of determining what defect caused the faulty 
product and where the defect is located (diagnosis), third fixing 
the defect (rework), and fourth eliminating the causes of the 
defects (continuous improvement).  Depending on the maturity 
of the product, its placement in the market, and the profit 
associated with selling it, all, some or none of the four activities 
listed above may be involved.  Understanding the 
test/diagnosis/rework costs may determine the extent to which 
the system designer can control and optimize the manufacturing 
cost, and the extent to which it makes sense to do so.   

The ultimate goal of any functional test strategy is the 
determination of: 1) When should a system be tested?  At what 
point(s) in the manufacturing process? 2) How much testing 
should be done, i.e., how thorough should the test be?  A test 

                                                 
1 In this paper we are concerned with recurring functional (pass/fail) 
and diagnostic testing only, not environmental testing (i.e., 
qualification testing). 
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that detects 10% of the defects in a product may cost a small 
fraction of a test that identifies 95% of the defects, so, if I have 
multiple tests in a process, what is the optimum fault coverage 
to buy for each one? and 3) How much time and money should 
be spent to make the product more testable?  These goals would 
be easy to realize if we had unlimited time, resources, and 
money.  We could stop after every step in the manufacturing 
process and perform a full function test, and add structures to 
our system such that every critical element could be accessed 
and tested.  These measures are unfortunately far from practical 
and we are usually faced with determining how to obtain the 
best test coverage possible for the least cost. 

The specific goal of test economics is to minimize the cost 
of discarding good product and the cost of shipping bad 
product.  This goal is enabled through the development of 
models that allow the yield and cost of products that pass 
through test operations to be predicted as a function of the 
properties of the product entering the test and the characteristics 
of the test operation (its cost, yield, and ability to detect faults 
in the product it is testing).   

Although the model discussed here has general 
applicability to products fabricated using series and parallel 
processes, a specific application that can benefit immediately is 
electronic board assembly.  Board assembly is process of 
attaching electrical components (chips, passives, connectors, 
etc.) to a printed circuit board to form a functional module (we 
will refer to an individual instance of product in the process as 
a “module” throughout the remainder of this paper).  

There are several existing test/rework models that are 
applicable to process modeling and process-flow based cost 
analyses for electronic systems. Basic models, (e.g., Dislis et 
al. 1993, Tegethoff and Chen 1994, Scheffler et al. 1998) 
account for test fault coverage and single rework attempts 
(diagnosis is combined with rework and not explicitly treated).  
These models also assume that the application of the test does 
not contribute defects to the product, and that the test produces 
no false positives.  More detailed models have also appeared.  
A model that appears in Abadir et al. 1994 and Sandborn and 
Moreno 1994, accomodates multiple rework attempts, but, 
again ignores defects introduced in testing, false postives, and 
although seperating diagnosis from rework diagramatically, 
does not actually treat diagnosis explicitly in its analysis.  
Athough the detail accomodated in the existing models varies, 
in general they do not account for new defects introduced 
during the test, treat diagnosis explicitly or false positives in 
testing. 

 
In order to accommodate the additional effects and obtain a 

model that is readily useable in a process and cost modeling 
environment, a more comprehensive test/diagnosis/rework 
model has been formulated.  The next section of this paper 
describes the model developed and used by the authors. The 
third section implements the model within a multi-objective 
optimization environment, and the forth section provides 
example results for optimizing the location and characteristics 
of test/diagnosis/rework operations in a general process flow. 

TEST/DIAGNOSIS/REWORK MODEL 
The objective of the test economics model is to 

accommodate the test/diagnosis/rework effects relevant to 
electronic system assembly processes.  In these processes, 
defect insertion during test and rework operations is not un-
common (e.g., from handling and/or probes making physical 
contact with the board), false positives2 can be a significant 
problem, multiple rework attempts are made when dealing with 
expensive systems such as multichip modules, and complex 
rework operations that may include reassembly of significant 
portions of the system are performed. 

Figure 1 shows the content of the test/diagnosis/rework 
model.  In the following description we use “module” to refer 
to the item being tested (e.g., a printed circuit board with chips 
assembled on it).  Inputs to this model are the accumulated cost 
and yield of upstream processes (Cin and Yin), the number of 
modules (Nin) is not a required input and is only included for 
convenience in the formulation of the model.3  Yield is the ratio 
of non-defective (good) modules to all modules, non-defective 
and defective (bad).  The test portion of the model is the top 
most group of three steps in Figure 1.  This model can be used 
to account for defects introduced by the test operation both 
prior to the actual test (e.g., loading the module into the tester 
or stationing the probes on the module)  and after the test result 
is recorded (e.g., unloading the module from the tester).  The 
modules that are determined to be faulty go on to the diagnosis 
step.  Three outcomes are possible from diagnosis: 1) no fault is 
found in which case the module goes back for retesting, 2) the 
module is determined to be reworkable and sent on to rework, 
or 3) the module is determined to be non-reworkable and sent 
to scrap.  The rework process operates on the reworkable 
modules and scraps modules that can not be successfully 
reworked. The reworked modules are re-tested and if the 
reworked modules are found to be faulty again, the modules are 
again sent for diagnosis. This rework process can be performed 
a specified number of times (attempts).   

There are several key assumptions made in the formulation 
of this model: defects introduced by the diagnosis step are not 
explicitly treated; and false positive (fp) and fault coverage (fc) 
act simultaneously and they are independent of each other, i.e., 
the fault coverage acts only on bad modules and the false 
positive acts either only on good modules or on all modules. 

                                                 
2 A false positive is a positive test result in subjects who do not 
possess the attribute for which the test is conducted.  Electronic 
systems test engineers define false positives as a Type I tester error 
(Williams et al. 1992).  In testing, this means that a test will identify 
good product as bad at some non-negligible rate.  In fact, data at the 
board and system level has shown that as many as 46% of all failures 
are not actually failures, but false positives, Henderson et al. 1992. 
3 In general, yield and cost results from this model are independent of 
Nin, however, if equipment, tooling, or other non-recurring costs are 
included, the results become dependent on Nin and can be computed 
from accumulations of time that specific equipment is occupied or the 
quantity of tooling used to produce a specific quantity of modules, 
e.g., see Trichy et al. 2001. 
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Figure 1. Organization of the test/diagnosis/rework model.  Table I describes the notation 
appearing in this figure.  

 
 

Table I. Nomenclature used in Figure 1 and throughout the discussion in this section 
Cin Cost of a module entering the 

test/diagnosis/rework process 
Nin Number of modules entering the 

test/diagnosis/rework process 
Ctest Cost of test/module Nd Total number of modules to be 

diagnosed 
Cdiag Cost of diagnosis/module Ngout Number of no fault found modules 
Crew Cost of rework/module  Nd1 Nd – Ngout 
Cout Effective cost of a module exiting the 

test/diagnosis/rework process 
Nr Number of modules to be reworked 

fc Fault coverage Nrout Number of modules actually reworked 
fp False positives fraction, the probability 

of testing a good module as bad 
Ns1 Number of modules scrapped by 

diagnosis process 
fd Fraction of modules determined to be 

reworkable 
Ns2 Number of modules scrapped during 

rework 
fr Fraction of modules actually reworked Nout Number of a modules exiting the 

test/diagnosis/rework process, includes 
good modules and test escapes 

Yin Yield of a module entering the 
test/diagnosis/rework process 

  

Ybeforetest Yield of processes that occur entering 
the test 

  

Yaftertest Yield of processes that occur exiting the 
test 

  

Yrew Yield of the rework process    
Yout Effective yield of a module exiting the 

test/diagnosis/rework process 
  

 

 

Versions of Cin, Yin and Nin appear both 
with and without subscripts in the 
proceeding discussion.  When the 
variables appear without subscripts they 
refer to the values entering the process.  
When they have subscripts, they represent 
specific rework attempts. 
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A. Cost Calculation 
The cost incurred by all the modules that eventually pass 

the test step is given by, 

 ( )
ii out

n

0i
testin1 N CCC ∑

=

+= , (1) 

where n is the number of rework attempts allowed, i.e., the 
maximum number of attempts to rework an individual module 
is n and Nouti is number of modules passed by the test in the ith 
rework attempt (see (6) and associated discussion).  When i=0, 
C1 is the total cost of the modules that pass the test without ever 
going through diagnosis or rework.  The cost incurred by all the 
modules scrapped by the diagnosis step is given by, 
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=
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and the cost incurred by all the modules scrapped by the rework 
step is given by, 
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=
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s2rewdiagtestin3 ii
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where Ns1i and Ns2i are defined in (8) and (9).  After the final 
rework (nth rework attempt), the modules that do not pass the 
test are scrapped. The first term in (4) accounts for the 
defective modules scrapped by the final test, and the second 
term accounts for any false positives that are encountered 
during the final test, 
 

( ) ( )testinpbeforetestinintestind4 CCfYYN CCNC
nnnnn

+++=  (4) 
 
Equation (4) applies when fp applies to only good modules, and 
when fp applied to all modules.  Ninn appearing in (4) is defined 
in (11).  The total cost of all the modules (including scrapped 
modules) is the sum of C1 through C4.  The total effective cost 
per output module associated with this model is the total cost 
divided by the total number of output modules (modules that 
are eventually passed by the test), 
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B. Quantity of Modules 
The number of modules moving through different portions 

of the process is given by (6)-(11), 
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when fp applied to all modules. 

 ( )
ii 1dd1s Nf-1  N =  (8) 

 ( )
ii rr2s Nf-1  N =  (9) 

 
ii 1ddr Nf  N =  (10) 





>+
=

=
                                    0  i when YYNfNf

                                                                               0  i when N
  N

beforetestininprr

in
in

1-i1-i1-i
i

  (11) 
where parameters without subscripts (Nin, Cin, and Yin) indicate 
values entering the process (Figure 1).  Equation (6) follows 
from the classical result for the yield of modules that pass a 
simple test step (a test step that does not introduce new defects 
or false positives, and 0 rework attempts) given in terms of the 
incoming yield (Yin) and the fault coverage (fc), i.e., 

cf-1
inout Y  Y = , Willams and Brown 1981, and Agrawal et al. 

1992.  Using this result, it is can be shown that the fraction of 
modules starting the test that “pass” the simple test step is cf

inY .  
The total number of modules that successfully pass the test 
process after n rework attempts is given by, 

 ∑
=

=
n

0i
outout i

N  N . (12) 

The module counting in (6)-(11) assumes that all false positives 
on good modules go through diagnosis and back into test 
without scrapping of modules in diagnosis or rework.  The 
formulation is also only valid when fp < 1, Yin > 0 and Ybeforetest 
> 0.  The input cost (Cini) that appears in (1)-(4) is given by Cin 
when i = 0 and by (13) when i > 0. 
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C. Yields  

The input yield (Yini) that appears in (4) and (6)-(13) is 
given by Yin when i = 0 and by (14) when i > 0. 
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The final yield of modules that successfully pass the process is 
given using the general result in Willams and Brown 1981, and 
Agrawal et al. 1992, by, 
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when fp applies to only good modules, and 
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when fp applied to all modules. 
Note, Nin cancels out of (5) and (15) making the total cost 

per module and final yield independent of the number of 
modules that start the process, which is intuitively correct since 
no volume-sensitive effects (such as material or equipment 
costs) are included in the recurring model. 

Examples of applying the model discussed in this section 
appear in Trichy et al. 2001. 

 
D. Variable Rework Cost and Yield Models 

In general the cost (time) of performing test depends on the 
fault coverage desired, and similarly, the cost of rework is 
linked to the yield of modules that result from it.  
     A relationship between the cost of test (proportional to test 
time or number of tests performed) and fault coverage has been 
suggested by Goel 1980. Empirical data shows that the test 
process can be divided in two phases. A relatively small subset 
of TI  (number of tests in Phase I see Figure 2) of the total set of 
tests provides a fault coverage ranging from 65% to 85% for 
most combinational logic circuits (Goel 1980). For Phase II of 
the test generation, the number of additional tests required is 
approximately a linear function of the number of untested faults 
remaining at the end of Phase I. Unlike Phase I, in Phase II 
each generated test tends to detect fewer faults than the one 
before it and the average cost per detected fault increases. For 
the purpose of simplifying the relationship, an exponential 
function can be used to approximately simulate Phase I and a 
linear function in Phase П on the assumption that Phase II 
would never reach full coverage (100% of fault coverage) in 
practical testing. Assuming that the test cost is proportional to 
the number of tests, a relationship between test cost and fault 
coverage can be derived,  
 

 [ ] 1) (0,f  ,Cr)fln(1bpC cfttctttest ∈+−−=            (16) 
 
where pt is the cost coefficient; bt is the coefficient of test 
characteristic, rt is the fault ratio, fc is the fault coverage of test, 
Cft is the fixed cost of test4.  

A similar functional relationship between rework yield (yr) 
and rework cost (Crew) can be developed, 

 

 [ ] 1) (0,y  ,Cr)yln(1bpC rfrrrrrrew ∈+−−=  .         (17) 
 

The concept of having a choice of the fault coverage to 
purchase is straightforward – fault coverage is a measure of the 
ability of a set of tests (a collection of test vectors) to detect a 
given class of faults that may occur in a device under test, the 
fault coverage attained with a test is dependent on the number 
of test vectors exercised, which determines the test time and 
thereby the test cost.  In the case of rework, the rework yield 
(really the rework success rate) depends on types of faults that 
are selected for repair and potentially the thoroughness of that 
repair.    

Functional relationships between fault coverage and test 
cost, and rework yield and rework cost obviously depend on the 
type of system being considered, the particular baseline values 
used for the examples considered in this paper are shown in 
Table II. The relationships in (16) and (17) were used for the 
remaining work in this paper as examples only.  The 
methodology that is the subject of this paper, will work 
successfully with alternative models. 

Table II. Example values of factors in (16) and (17) 
pt bt rt Cft pr br rr Cfr 
0.02 -288 8.2 1 0.02 -300 10 1 

OPTIMIZING TDR LOCATIONS AND 
CHARACTERISTICS IN A PROCESS FLOW 

The previous section develops a model for a single TDR 
operation.  The next issue is to cumulatively compute the 
objective function of feature parameters (fault coverage/test 
cost, rework success rate/rework cost) of a general process flow 
that includes multiple TDR operations. For the purpose of 
derivation of the objective function, search algorithms are 
needed to traverse the process flow with the computation 
performed according to the sequence of process steps. 

The framework for optimizing the implementation of 
TDRs in a process flow is shown in Figure 3. In the 
methodology, the process flow for manufacture or assembly of 
the electronic system is first generated. Then TDR operations 
are then inserted into the process flow at all possible locations 
(i.e., after every process step) for use as an initial guess.  If the 
TDR operations can be inserted according to specific 
experiences the optimization will be more efficient. Starting 
with the process flow and the initial guess of TDR operation 

                                                 
4
 Cft accounts for fixed costs associated with testing, i.e., there is a 

minimum fixed cost for having even a very small fault coverage. 
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Figure 2. Typical curve of untested faults versus the 
number of tests, Goel 1980.  “a” is a constant whose 
value is in the range 1-2 for a given logic structure.



Copyright  2003 by ASME 6

locations, a pre-analysis is executed to sort similar process 
steps and merge branches to decrease the complexity of 
process. A search algorithm is applied to traverse the entire 
process to perform the cumulative calculation of the objective 
function (yielded cost). Real-Coded Genetic Algorithms 
(RCGAs) are then used to perform a multi-objective 
optimization that minimizes yielded cost.  

 
A. Graphical Representation of a Process Flow 

Based on the analysis of the TDR model in the last section, 
we know how to compute the feature parameters of a single test 
step. A general process flow may, however, have many 
different (possibly independent) TDR activities located within 
it. The next issue to be addressed is how to obtain the objective 
function (yielded cost, i.e., cost divided by yield) for an entire 
general process flow. Graphs are useful in representing the 
process flow, i.e., complex systems involving binary 
relationships among process steps (Rao 1996). 

A graph G consists of a set of nodes V and a set of edges 
E, >=< EV,G . Here G denotes the entire process flow, V 
denotes the process steps and an edge EYX, >∈< denotes the 
directed flow between two adjacent process steps. The degree 
of a node is the number of the neighbors adjacent to it. We 
write YX → when EYX, >∈< is in a directed graph 
(DIGRAPH) (Rao 1996, Choi and Chatterjee 2001). We 
define PRED(X) as the set of all predecessors (process steps 
preceding X) of node X, and SUCC(X) as the set of successors 
(process steps after X) of X. if YX → , then PRED(Y)X ∈  

and SUCC(X)Y ∈ . The indegree id(v) of a node X is the 
cardinality of PRED(X) and the outdegree od(v) of a node X is 
the cardinality of SUCC(X) . The graphical representation of 
an example complex process flow is shown in Figure 4. 

From the analysis of a generic process flow like the one in 
Figure 4, four types of basic steps have been identified: 

• Start Step, 0id(v) and 1od(v) == , There are no inputs to 
the Start Step and just one output from it.  There may be 
multiple Start Steps in a complex process flow. 

• Sequence Step, 1id(v) and 1od(v) == , There is one input 
and one output for a sequence step.  Sequence Steps are the 
most common type of step in process flows for electronic 
systems. 

• Cross Step, 1id(v) and 1od(v) ≥= , There are multiple 
inputs and just one output associated with this kind of step. 
The complexity of the problem is significantly increased by 
each Cross Step in the process flow.    

• End Step, 1id(v) and 0od(v) ≥= , An End Step represents 
the end of the process flow, which merges all the branches 
to one. The objective function of the process flow is derived 
from an End Step.  There may only be one End Step in a 
process flow. 

 
B.  Waiting Sequential Search (WSS) 

To derive the objective function of a process flow, every 
process step needs to be searched in order to perform the 
cumulative computation. Significant previous work on graph-
based search algorithms exists, e.g., Chartrand and Oellermann 
1993, Tarjan 1972. Several algorithms have been applied to 
resolve search problems similar to the one posed here,  Rao 
1996, Choi and Chatterjee 2001. As to the graph-based 
representation of our process flows, there are several specific 
features that make it attractive to propose a new search 
algorithm to perform an efficient search in the process flow. 

From the Figure 4, the following features of the general 
complex process flow can be observed: 1) The  1od(v) ≤ is 
always true for all the vertices (process steps) in the process 
flow; and 2) There are sequential search requests for the graph, 
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Figure 3. The framework for optimization of 
TDR operation location(s) and characteristics 

for a general process flow. 
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i.e., only when all the predecessors PRED(Y) of v(Y) have been 
visited, then v(Y) could be visited. 

WSS begins from the lowest-numbered vertex that belongs 
to a Start Step then proceeds to search the next step. By 
checking the type of the successor, the algorithm decides to 
continue to search to the next Sequence Step or wait at the 
Cross or End steps. After moving to the next step, the 
corresponding computation of feature parameters of the 
previous step is performed and the outcome is stored in a data 
table in which all the property information associated with 
process steps are recorded. If Cross or End types of steps are 
encountered, the visitation status of all predecessors will be 
checked. If all the predecessors have been checked, the 
searching continues, if not, the search begins from another Start 
Step type of vertex until the last Start Step vertex is visited. The 
algorithm requires that the searching of the next step continue 
only after all the branches of the present step have been visited. 
There are waiting actions for the sequential search based on the 
characteristics of the process flow. The searching process for 
the complex process flow example shown in Figure 4 using 
WSS is described below: 

1. First, begin from the lowest number of Start Steps (2), (2) 
→ (6), check whether all the other branches have been 
searched, compute then wait; 

2.  (10) → (8), check the other branches and wait; 
3.  (25) → (14), wait; 
4.  (27) → (22), wait; 
5.  (29) → (7), wait; 
6.  (33) → (6), wait; 
7.  (42) → (45) → (47) → (9), wait; 
8.  (44) → (4) → (7) → (15) → (6) → (14), wait; 
9.  (53) → (70), wait; 
10. (66) → (70) → (21) → (22) → (14) → (9) → (8), (8) is 

an End Step, all the branches have met and the process 
ends. 

 
C. Multi-Objective Optimization Function 

The objective of optimizing TDR location(s) and 
characteristics to be minimized is the yielded cost of the entire 
process flow (Becker and Sandborn 2001). The yielded cost we 
are interested in is the final effective cost per product instance 
(after the final processing step and/or TDR operation) divided 
by the final product yield.  This yielded cost gives a measure of 
the effective cost per good product instance after all the 
manufacturing and TDR operations are completed.  The final 
cost per product instance and yield are determined by 
accumulating (sum or product) the individual process step costs 
and yields and the TDR operation costs and yields (equation (5) 
and (15)) in the appropriate sequence through the process.   

The objective function in which feature parameters of all 
possible TDR operations are considered can be derived from 
sequential cumulative computation from the Start Steps to the 
End Step. When the WSS algorithm traverses the entire process 
flow, a cumulative function is computed to be used as the 

objective function that needs to be minimized in the 
optimization.  The optimization problem becomes, 

 ∑
=

∈

n

1i
m,2,1YXx

)xx(xCmin
iii

L  (18) 

where, 
m = number of feature parameters to be optimized; 
n =  number of total process steps with all possible TDR 

operations included; 
CY = yielded cost of the process flow, cumulative cost 

divided by final yield. 

In the optimization, first the TDR operations are placed in 
all possible locations or be chosen according to expert 
suggestions. The fault coverage (fci), rework yield (Yri) and 
rework attempts for the ith TDR operation need to be optimized 
in order to minimize the total yielded cost of the process flow. 
For example, for the complex process flow in Figure 4, there 
are 22 (including the one location after the End Step - 8) 
possible TDR operation locations following each of the process 
steps if there were no specific location constraints as to where a 
TDR operation could or could not be placed provided by the 
user. If just fault converge and rework yield of the TDR 
operations are to be optimized, the objective function can be 
written as (19), 

 [0,1]X  ,)Y(fCmin
22

1i
r,cYXY,f ii

iric

∈∑
=

∈
. (19) 

D. Optimization with Real-Coded Genetic Algorithms (RCGAs) 
Complex process flows with hundreds of process steps are 

not uncommon. A general optimization of such a process flow 
requires an equally large stream of TDR operations resulting in 
several hundred variables to be optimized for the tradeoff 
analysis. To optimize feature parameters of possible TDR 
operations in order to find the global optimum of yielded cost 
in the process flow, RCGAs are used. RCGAs have the 
advantage of requiring less storage than the Binary-Coded 
Genetic Algorithms (BCGAs) and the accurate representation 
of continuous parameters, which enables efficient optimization 
of multi-parameter functions (Oyama et al. 1999).   

With RCGAs integrated, a process flow cost optimization 
modeling system according to the framework in Figure 3 has 
been developed to determine the optimum placement and 
characteristics of TDR operations in general process flows. The 
system results in suggestions of where the TDR operations 
should be inserted and not inserted, and what the optimal 
values of feature parameters of testing and rework should be 
based on the optimization analysis of the objective function.  

OPTIMIZATION IN A COMPLEX PROCESS FLOW  
For demonstration, the process flow shown in Figure 5 has 

been used. All possible TDR locations have been marked in the 
process.  Table III shows the corresponding process step 
properties (cost and yield); the characteristics of the TDR 
operations 14-24 are solved for in the optimization process. The 
cost and yield associated with the individual process steps is 
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example data that is representative of high-end electronic 
system assembly.  As an example comparison analysis, the 
optimum fault coverage and rework yield of all possible TDR 
operations for various fixed cost values of test and rework are 
shown in Figure 6.  The test and rework step properties are 
given in Table II except for the values are Cft and Cfr, which are 
varied as indicated in Figure 6. 

The algorithm begins by automatically placing TDR 
operations in all possible locations:  14-24 in Figure 5.   The 
algorithm then determines the fault coverage and rework 
characteristics of each TDR that minimize the final yielded 
cost.  Figure 6 shows that results from the optimization for 
different assumptions about the fixed costs associated with the 
test and rework. Figure 6(a) has low (inexpensive) test and 
rework - Cft and Cfr are both small; as a result, 9 of the 11 
possible locations for tests are present (i.e., have fault 
coverages above the threshold for testing, which is a fault 
coverage of 0.1).  Because rework is also inexpensive in case 
(a), rework is being done at all the actual test locations.  The 
Figure 6(a) result is intuitive, if test and rework are 
inexpensive, then test and rework will be done after nearly 

every process step.  Figure 6(b) has inexpensive testing (same 
as case (a)), but the rework is expensive.  As a result, 
significantly fewer rework opportunities are actually exercised.  
Notice also that the optimum test locations (and fault 
coverages) change due to the inclusion or exclusion of rework 
possibilities, even though the characteristics of the testing are 
the same.  Figure 6(c) shows the same test costs as 6(a) and (b), 
but no rework is allowed – the optimum test locations and fault 
coverages again differ from cases 6(a) and 6(b) and the average 
value of fault coverage increases to compensate for the loss of 
rework capabilities (the optimization algorithm is attempting to 
maximize the final yield in order to minimize cost divided by 
yield).  Figure 6(d) has expensive test and expensive rework.  
As a result, only 3 of 11 possible test locations are used (Test 
20, 23 and 24 only), however, rework is included with all three 
of these tests.  In this case, the majority of the testing is focused 
on Test 24 near the end of the process indicating that if test is 
expensive and defects introduced in the process are spread over 
the entire process (as opposed to being focused on a single 
process step), the optimum test location is near the end of the 
process, which is intuitive. 

Figure 6 provides example optimization results for an 
example process flow.  Figure 7 shows example convergence 
characteristics of the yielded cost of the complex process flow 
with the number of generations of the RCGAs. 

1 TDR
(15) 2 TDR

(16) 3

4 TDR
(14) 6 TDR

(18) 7

11 TDR
(19) 12 TDR

(20)

TDR
(17)

TDR
(21)

8

9

TDR
(22)

TDR
(24) 10

13

TDR
(23)

Figure 5. An example process flow with all possible TDR operations.  

Table III. Characteristics of the process steps in 
Figure 5 (note, there is no step 5) 

Process Step Cost ($) Yield (fraction) 
Input to 1 41 0.91 
Input to 4 60 0.36 
Input to 9 37 0.42 

Input to 11 9 0.95 
Input to 13 75 0.96 

1 21.1 0.95 
2 12.3 0.88 
3 14 0.89 
4 23.8 0.94 
6 45 0.96 
7 11.3 0.86 
8 33.8 0.92 
9 13 0.9 

10 15 0.92 
11 60 0.95 
12 78 0.91 
13 54 0.94 
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Figure 7. Optimization of yielded cost  
for various levels of fixed cost of test and rework 
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(a) Cft= $1 and Cfr= $1 
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(b) Cft= $1 and Cfr= $100                
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(c) Cft= $1 and no rework 
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 (d) Cft= $50 and Cfr= $100    

 
Figure 6. Computed optimum feature parameter values for TDR operations in the process flow shown in Figure 5.   

Various fixed test and rework costs used in (16) and (17) assumed, other parameters given in Table II.
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SUMMARY 
     This paper describes a framework for the optimization of 
Test/Diagnosis/Rework (TDR) location(s) and characteristics in 
a manufacturing processes A new search algorithm is 
developed and used to analyze complex process flows and to 
obtain values of a multi-objective function with a stream of 
feature parameters included. An optimization modeling system 
with Real-Coded Genetic Algorithms (RCGAs) integrated has 
been developed to optimize critical parameters and possible 
TDR locations for general process flows. The methodology 
developed and demonstrated in this paper guides the placement 
of TDR operations in practical manufacturing processes and 
has been specifically applied to electronic systems 
manufacturing (board assembly).  The ability to optimize the 
TDR operations can also be used as the feedback to a Design 
for Test (DFT) analysis of the electronic systems showing 
which portion should be redesigned to accommodate the testing 
for a higher level of fault coverage and where there is less need 
for test to decrease the cost of products. 
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