
Copyright  2003 by ASME 1

Proceedings of DETC’03:
ASME 2003 Design Engineering Technical Conference

and Computers and Information in Engineering Conference
Chicago, IL, September 2-6, 2003

DETC2003/DFM-48145

MODELING TEST, DIAGNOSIS, AND REWORK OPERATIONS AND OPTIMIZING THEIR
LOCATION IN GENERAL MANUFACTURING PROCESSES

Zhen Shi

CALCE Electronic Products and Systems Center
Department of Mechanical Engineering

University of Maryland
College Park, MD 20742

Peter Sandborn
CALCE Electronic Products and Systems Center

Department of Mechanical Engineering
University of Maryland

College Park, MD 20742

ABSTRACT

This paper presents a test, diagnosis, and rework analysis
model for use in manufacturing process modeling. The
approach includes a model of functional test operations
characterized by fault coverage, false positives, and defects
introduced in test, in addition to rework and diagnosis
(diagnostic test) operations that have variable success rates
and their own defect introduction mechanisms. The model
accommodates multiple rework attempts on a product instance.

The model is applied within a framework for optimizing the
location(s) and characteristics (fault coverage/test cost, rework
success rate/rework cost) of Test/Diagnosis/Rework (TDR)
operations in a general manufacturing process. A new search
algorithm called Waiting Sequence Search (WSS) is applied to
traverse a general process flow to perform the cumulative
calculation of a yielded cost objective function. Real-Coded
Genetic Algorithms (RCGAs) are used to perform a multi-
objective optimization that minimizes yielded cost. An example
of a general complex process flow is used to demonstrate the
feasibility of the algorithm.

Keywords – Test economics; Test; Diagnosis; Rework;
Cost modeling; Electronic systems.

INTRODUCTION
At a fundamental level, system design is a tradeoff analysis

activity. This tradeoff includes factors such as size and
performance, but often the most important factor in the tradeoff
is cost. The various recurring costs that affect the manufacture

of a system are the fabrication/assembly cost, test/inspection1
cost, rework cost, and waste disposition cost.

For many types of systems, functional test is an important
driver that significantly affects the total cost of manufacturing.
In electronic systems, for example, it is not uncommon that
greater than 60% of a product’s recurring cost can be attributed
to testing (Turino 1990), for integrated circuits, recurring
testing costs are approaching 50% of the total product cost
(Rhines 2002). When the products that result from a
manufacturing process are imperfect, four costs are potentially
involved, first the cost of determining whether a given instance
of the product is good or bad (recurring functional testing),
second the cost of determining what defect caused the faulty
product and where the defect is located (diagnosis), third fixing
the defect (rework), and fourth eliminating the causes of the
defects (continuous improvement). Depending on the maturity
of the product, its placement in the market, and the profit
associated with selling it, all, some or none of the four activities
listed above may be involved. Understanding the
test/diagnosis/rework costs may determine the extent to which
the system designer can control and optimize the manufacturing
cost, and the extent to which it makes sense to do so.

The ultimate goal of any functional test strategy is the
determination of: 1) When should a system be tested? At what
point(s) in the manufacturing process? 2) How much testing
should be done, i.e., how thorough should the test be? A test

1 In this paper we are concerned with recurring functional (pass/fail)
and diagnostic testing only, not environmental testing (i.e.,
qualification testing).

Copyright  2003 by ASME 2

that detects 10% of the defects in a product may cost a small
fraction of a test that identifies 95% of the defects, so, if I have
multiple tests in a process, what is the optimum fault coverage
to buy for each one? and 3) How much time and money should
be spent to make the product more testable? These goals would
be easy to realize if we had unlimited time, resources, and
money. We could stop after every step in the manufacturing
process and perform a full function test, and add structures to
our system such that every critical element could be accessed
and tested. These measures are unfortunately far from practical
and we are usually faced with determining how to obtain the
best test coverage possible for the least cost.

The specific goal of test economics is to minimize the cost
of discarding good product and the cost of shipping bad
product. This goal is enabled through the development of
models that allow the yield and cost of products that pass
through test operations to be predicted as a function of the
properties of the product entering the test and the characteristics
of the test operation (its cost, yield, and ability to detect faults
in the product it is testing).

Although the model discussed here has general
applicability to products fabricated using series and parallel
processes, a specific application that can benefit immediately is
electronic board assembly. Board assembly is process of
attaching electrical components (chips, passives, connectors,
etc.) to a printed circuit board to form a functional module (we
will refer to an individual instance of product in the process as
a “module” throughout the remainder of this paper).

There are several existing test/rework models that are
applicable to process modeling and process-flow based cost
analyses for electronic systems. Basic models, (e.g., Dislis et
al. 1993, Tegethoff and Chen 1994, Scheffler et al. 1998)
account for test fault coverage and single rework attempts
(diagnosis is combined with rework and not explicitly treated).
These models also assume that the application of the test does
not contribute defects to the product, and that the test produces
no false positives. More detailed models have also appeared.
A model that appears in Abadir et al. 1994 and Sandborn and
Moreno 1994, accomodates multiple rework attempts, but,
again ignores defects introduced in testing, false postives, and
although seperating diagnosis from rework diagramatically,
does not actually treat diagnosis explicitly in its analysis.
Athough the detail accomodated in the existing models varies,
in general they do not account for new defects introduced
during the test, treat diagnosis explicitly or false positives in
testing.

In order to accommodate the additional effects and obtain a

model that is readily useable in a process and cost modeling
environment, a more comprehensive test/diagnosis/rework
model has been formulated. The next section of this paper
describes the model developed and used by the authors. The
third section implements the model within a multi-objective
optimization environment, and the forth section provides
example results for optimizing the location and characteristics
of test/diagnosis/rework operations in a general process flow.

TEST/DIAGNOSIS/REWORK MODEL
The objective of the test economics model is to

accommodate the test/diagnosis/rework effects relevant to
electronic system assembly processes. In these processes,
defect insertion during test and rework operations is not un-
common (e.g., from handling and/or probes making physical
contact with the board), false positives2 can be a significant
problem, multiple rework attempts are made when dealing with
expensive systems such as multichip modules, and complex
rework operations that may include reassembly of significant
portions of the system are performed.

Figure 1 shows the content of the test/diagnosis/rework
model. In the following description we use “module” to refer
to the item being tested (e.g., a printed circuit board with chips
assembled on it). Inputs to this model are the accumulated cost
and yield of upstream processes (Cin and Yin), the number of
modules (Nin) is not a required input and is only included for
convenience in the formulation of the model.3 Yield is the ratio
of non-defective (good) modules to all modules, non-defective
and defective (bad). The test portion of the model is the top
most group of three steps in Figure 1. This model can be used
to account for defects introduced by the test operation both
prior to the actual test (e.g., loading the module into the tester
or stationing the probes on the module) and after the test result
is recorded (e.g., unloading the module from the tester). The
modules that are determined to be faulty go on to the diagnosis
step. Three outcomes are possible from diagnosis: 1) no fault is
found in which case the module goes back for retesting, 2) the
module is determined to be reworkable and sent on to rework,
or 3) the module is determined to be non-reworkable and sent
to scrap. The rework process operates on the reworkable
modules and scraps modules that can not be successfully
reworked. The reworked modules are re-tested and if the
reworked modules are found to be faulty again, the modules are
again sent for diagnosis. This rework process can be performed
a specified number of times (attempts).

There are several key assumptions made in the formulation
of this model: defects introduced by the diagnosis step are not
explicitly treated; and false positive (fp) and fault coverage (fc)
act simultaneously and they are independent of each other, i.e.,
the fault coverage acts only on bad modules and the false
positive acts either only on good modules or on all modules.

2 A false positive is a positive test result in subjects who do not
possess the attribute for which the test is conducted. Electronic
systems test engineers define false positives as a Type I tester error
(Williams et al. 1992). In testing, this means that a test will identify
good product as bad at some non-negligible rate. In fact, data at the
board and system level has shown that as many as 46% of all failures
are not actually failures, but false positives, Henderson et al. 1992.
3 In general, yield and cost results from this model are independent of
Nin, however, if equipment, tooling, or other non-recurring costs are
included, the results become dependent on Nin and can be computed
from accumulations of time that specific equipment is occupied or the
quantity of tooling used to produce a specific quantity of modules,
e.g., see Trichy et al. 2001.

Copyright  2003 by ASME 3

Test
(Ctest , fc , fp)

Defects
(Ybeforetest)

Defects
(Yaftertest)

R
ew

or
ke

d

Repairable (Nr)

To be diagnosed (Nd)

Scrap (Ns1)

Diagnosis
(fd, Cdiag)

No Fault
Found

Ngout

Nrout
Rework

(fr, Crew,Yrew)

Nd1

Scrap (Ns2)

Cin, Yin, Nin Cout, Yout, NoutTest
(Ctest , fc , fp)

Defects
(Ybeforetest)

Defects
(Yaftertest)

R
ew

or
ke

d

Repairable (Nr)

To be diagnosed (Nd)

Scrap (Ns1)

Diagnosis
(fd, Cdiag)

No Fault
Found

Ngout

Nrout
Rework

(fr, Crew,Yrew)

Nd1

Scrap (Ns2)

Cin, Yin, Nin Cout, Yout, Nout

Figure 1. Organization of the test/diagnosis/rework model. Table I describes the notation
appearing in this figure.

Table I. Nomenclature used in Figure 1 and throughout the discussion in this section
Cin Cost of a module entering the

test/diagnosis/rework process
Nin Number of modules entering the

test/diagnosis/rework process
Ctest Cost of test/module Nd Total number of modules to be

diagnosed
Cdiag Cost of diagnosis/module Ngout Number of no fault found modules
Crew Cost of rework/module Nd1 Nd – Ngout
Cout Effective cost of a module exiting the

test/diagnosis/rework process
Nr Number of modules to be reworked

fc Fault coverage Nrout Number of modules actually reworked
fp False positives fraction, the probability

of testing a good module as bad
Ns1 Number of modules scrapped by

diagnosis process
fd Fraction of modules determined to be

reworkable
Ns2 Number of modules scrapped during

rework
fr Fraction of modules actually reworked Nout Number of a modules exiting the

test/diagnosis/rework process, includes
good modules and test escapes

Yin Yield of a module entering the
test/diagnosis/rework process

Ybeforetest Yield of processes that occur entering
the test

Yaftertest Yield of processes that occur exiting the
test

Yrew Yield of the rework process
Yout Effective yield of a module exiting the

test/diagnosis/rework process

Versions of Cin, Yin and Nin appear both
with and without subscripts in the
proceeding discussion. When the
variables appear without subscripts they
refer to the values entering the process.
When they have subscripts, they represent
specific rework attempts.

Copyright  2003 by ASME 4

A. Cost Calculation
The cost incurred by all the modules that eventually pass

the test step is given by,

 ()
ii out

n

0i
testin1 N CCC ∑

=

+= , (1)

where n is the number of rework attempts allowed, i.e., the
maximum number of attempts to rework an individual module
is n and Nouti is number of modules passed by the test in the ith
rework attempt (see (6) and associated discussion). When i=0,
C1 is the total cost of the modules that pass the test without ever
going through diagnosis or rework. The cost incurred by all the
modules scrapped by the diagnosis step is given by,

 ()∑
=

++=
1-n

1i
s1diagtestin2 ii

N CCCC , (2)

and the cost incurred by all the modules scrapped by the rework
step is given by,

 ()∑
=

+++=
1-n

1i
s2rewdiagtestin3 ii

N CCCCC , (3)

where Ns1i and Ns2i are defined in (8) and (9). After the final
rework (nth rework attempt), the modules that do not pass the
test are scrapped. The first term in (4) accounts for the
defective modules scrapped by the final test, and the second
term accounts for any false positives that are encountered
during the final test,

() ()testinpbeforetestinintestind4 CCfYYN CCNC
nnnnn

+++= (4)

Equation (4) applies when fp applies to only good modules, and
when fp applied to all modules. Ninn appearing in (4) is defined
in (11). The total cost of all the modules (including scrapped
modules) is the sum of C1 through C4. The total effective cost
per output module associated with this model is the total cost
divided by the total number of output modules (modules that
are eventually passed by the test),

out

4321
out N

CCCC
C

+++
= . (5)

B. Quantity of Modules
The number of modules moving through different portions

of the process is given by (6)-(11),

 () () c

i

i
iii

f

beforetestinp

beforetestinp
beforetestinpinout YYf-1

YYf-1
 YYf-1N N 










= (6a)

 () N-YYf-1N N
iiii outbeforetestinpind1 = (7a)

when fp applies to only good modules, and

 ()() c
iii

f
beforetestinpinout YYf-1N N = (6b)

 () () YY-1NfN-f-1N N beforetestininpoutpind1 iiiii
+= (7b)

when fp applied to all modules.

 ()
ii 1dd1s Nf-1 N = (8)

 ()
ii rr2s Nf-1 N = (9)

ii 1ddr Nf N = (10)





>+
=

=
 0 i when YYNfNf

 0 i when N
 N

beforetestininprr

in
in

1-i1-i1-i
i

 (11)
where parameters without subscripts (Nin, Cin, and Yin) indicate
values entering the process (Figure 1). Equation (6) follows
from the classical result for the yield of modules that pass a
simple test step (a test step that does not introduce new defects
or false positives, and 0 rework attempts) given in terms of the
incoming yield (Yin) and the fault coverage (fc), i.e.,

cf-1
inout Y Y = , Willams and Brown 1981, and Agrawal et al.

1992. Using this result, it is can be shown that the fraction of
modules starting the test that “pass” the simple test step is cf

inY .
The total number of modules that successfully pass the test
process after n rework attempts is given by,

 ∑
=

=
n

0i
outout i

N N . (12)

The module counting in (6)-(11) assumes that all false positives
on good modules go through diagnosis and back into test
without scrapping of modules in diagnosis or rework. The
formulation is also only valid when fp < 1, Yin > 0 and Ybeforetest
> 0. The input cost (Cini) that appears in (1)-(4) is given by Cin
when i = 0 and by (13) when i > 0.

()

()
i

1i1-i

i

1i1i1-i

i

in

rrrewdiagtestin

in

inbeforetestinpdiagtestin
in

N

Nf CCCC

N

NYYf CCC
 C

−

−−

+++

+
++

=

. (13)

C. Yields

The input yield (Yini) that appears in (4) and (6)-(13) is
given by Yin when i = 0 and by (14) when i > 0.

i

1i1i1i

i
in

rrrewinbeforetestinp
in N

NfYNYYf
 Y −−−

+
= . (14)

The final yield of modules that successfully pass the process is
given using the general result in Willams and Brown 1981, and
Agrawal et al. 1992, by,

()

N

YYf-1

YYf-1
NY

 Y
out

n

0i

f-1

beforetestinp

beforetestinp
outaftertest

out

c

i

i

i∑
=












= (15a)

when fp applies to only good modules, and

Copyright  2003 by ASME 5

()

N

YYNY

 Y
out

n

0i

f-1
beforetestinoutaftertest

out

c
ii∑

== (15b)

when fp applied to all modules.
Note, Nin cancels out of (5) and (15) making the total cost

per module and final yield independent of the number of
modules that start the process, which is intuitively correct since
no volume-sensitive effects (such as material or equipment
costs) are included in the recurring model.

Examples of applying the model discussed in this section
appear in Trichy et al. 2001.

D. Variable Rework Cost and Yield Models

In general the cost (time) of performing test depends on the
fault coverage desired, and similarly, the cost of rework is
linked to the yield of modules that result from it.
 A relationship between the cost of test (proportional to test
time or number of tests performed) and fault coverage has been
suggested by Goel 1980. Empirical data shows that the test
process can be divided in two phases. A relatively small subset
of TI (number of tests in Phase I see Figure 2) of the total set of
tests provides a fault coverage ranging from 65% to 85% for
most combinational logic circuits (Goel 1980). For Phase II of
the test generation, the number of additional tests required is
approximately a linear function of the number of untested faults
remaining at the end of Phase I. Unlike Phase I, in Phase II
each generated test tends to detect fewer faults than the one
before it and the average cost per detected fault increases. For
the purpose of simplifying the relationship, an exponential
function can be used to approximately simulate Phase I and a
linear function in Phase П on the assumption that Phase II
would never reach full coverage (100% of fault coverage) in
practical testing. Assuming that the test cost is proportional to
the number of tests, a relationship between test cost and fault
coverage can be derived,

 [] 1) (0,f ,Cr)fln(1bpC cfttctttest ∈+−−= (16)

where pt is the cost coefficient; bt is the coefficient of test
characteristic, rt is the fault ratio, fc is the fault coverage of test,
Cft is the fixed cost of test4.

A similar functional relationship between rework yield (yr)
and rework cost (Crew) can be developed,

 [] 1) (0,y ,Cr)yln(1bpC rfrrrrrrew ∈+−−= . (17)

The concept of having a choice of the fault coverage to
purchase is straightforward – fault coverage is a measure of the
ability of a set of tests (a collection of test vectors) to detect a
given class of faults that may occur in a device under test, the
fault coverage attained with a test is dependent on the number
of test vectors exercised, which determines the test time and
thereby the test cost. In the case of rework, the rework yield
(really the rework success rate) depends on types of faults that
are selected for repair and potentially the thoroughness of that
repair.

Functional relationships between fault coverage and test
cost, and rework yield and rework cost obviously depend on the
type of system being considered, the particular baseline values
used for the examples considered in this paper are shown in
Table II. The relationships in (16) and (17) were used for the
remaining work in this paper as examples only. The
methodology that is the subject of this paper, will work
successfully with alternative models.

Table II. Example values of factors in (16) and (17)
pt bt rt Cft pr br rr Cfr
0.02 -288 8.2 1 0.02 -300 10 1

OPTIMIZING TDR LOCATIONS AND
CHARACTERISTICS IN A PROCESS FLOW

The previous section develops a model for a single TDR
operation. The next issue is to cumulatively compute the
objective function of feature parameters (fault coverage/test
cost, rework success rate/rework cost) of a general process flow
that includes multiple TDR operations. For the purpose of
derivation of the objective function, search algorithms are
needed to traverse the process flow with the computation
performed according to the sequence of process steps.

The framework for optimizing the implementation of
TDRs in a process flow is shown in Figure 3. In the
methodology, the process flow for manufacture or assembly of
the electronic system is first generated. Then TDR operations
are then inserted into the process flow at all possible locations
(i.e., after every process step) for use as an initial guess. If the
TDR operations can be inserted according to specific
experiences the optimization will be more efficient. Starting
with the process flow and the initial guess of TDR operation

4
 Cft accounts for fixed costs associated with testing, i.e., there is a

minimum fixed cost for having even a very small fault coverage.

Linear Segment

N
um

be
r o

f U
nd

et
ec

te
d

Fa
ul

ts

F0

Number of Tests (t)

Phase I Phase II

T0TI

Iat/T
0 eF −=

Linear Segment

N
um

be
r o

f U
nd

et
ec

te
d

Fa
ul

ts

F0

Number of Tests (t)

Phase I Phase II

T0TI

Iat/T
0 eF −=

Figure 2. Typical curve of untested faults versus the
number of tests, Goel 1980. “a” is a constant whose
value is in the range 1-2 for a given logic structure.

Copyright  2003 by ASME 6

locations, a pre-analysis is executed to sort similar process
steps and merge branches to decrease the complexity of
process. A search algorithm is applied to traverse the entire
process to perform the cumulative calculation of the objective
function (yielded cost). Real-Coded Genetic Algorithms
(RCGAs) are then used to perform a multi-objective
optimization that minimizes yielded cost.

A. Graphical Representation of a Process Flow

Based on the analysis of the TDR model in the last section,
we know how to compute the feature parameters of a single test
step. A general process flow may, however, have many
different (possibly independent) TDR activities located within
it. The next issue to be addressed is how to obtain the objective
function (yielded cost, i.e., cost divided by yield) for an entire
general process flow. Graphs are useful in representing the
process flow, i.e., complex systems involving binary
relationships among process steps (Rao 1996).

A graph G consists of a set of nodes V and a set of edges
E, >=< EV,G . Here G denotes the entire process flow, V
denotes the process steps and an edge EYX, >∈< denotes the
directed flow between two adjacent process steps. The degree
of a node is the number of the neighbors adjacent to it. We
write YX → when EYX, >∈< is in a directed graph
(DIGRAPH) (Rao 1996, Choi and Chatterjee 2001). We
define PRED(X) as the set of all predecessors (process steps
preceding X) of node X, and SUCC(X) as the set of successors
(process steps after X) of X. if YX → , then PRED(Y)X ∈

and SUCC(X)Y ∈ . The indegree id(v) of a node X is the
cardinality of PRED(X) and the outdegree od(v) of a node X is
the cardinality of SUCC(X) . The graphical representation of
an example complex process flow is shown in Figure 4.

From the analysis of a generic process flow like the one in
Figure 4, four types of basic steps have been identified:

• Start Step, 0id(v) and 1od(v) == , There are no inputs to
the Start Step and just one output from it. There may be
multiple Start Steps in a complex process flow.

• Sequence Step, 1id(v) and 1od(v) == , There is one input
and one output for a sequence step. Sequence Steps are the
most common type of step in process flows for electronic
systems.

• Cross Step, 1id(v) and 1od(v) ≥= , There are multiple
inputs and just one output associated with this kind of step.
The complexity of the problem is significantly increased by
each Cross Step in the process flow.

• End Step, 1id(v) and 0od(v) ≥= , An End Step represents
the end of the process flow, which merges all the branches
to one. The objective function of the process flow is derived
from an End Step. There may only be one End Step in a
process flow.

B. Waiting Sequential Search (WSS)

To derive the objective function of a process flow, every
process step needs to be searched in order to perform the
cumulative computation. Significant previous work on graph-
based search algorithms exists, e.g., Chartrand and Oellermann
1993, Tarjan 1972. Several algorithms have been applied to
resolve search problems similar to the one posed here, Rao
1996, Choi and Chatterjee 2001. As to the graph-based
representation of our process flows, there are several specific
features that make it attractive to propose a new search
algorithm to perform an efficient search in the process flow.

From the Figure 4, the following features of the general
complex process flow can be observed: 1) The 1od(v) ≤ is
always true for all the vertices (process steps) in the process
flow; and 2) There are sequential search requests for the graph,

Generation of
Process Flow

 Placement of Test/
Diagnosis/Rework

Package

Pre-Analysis of
Process Flow

Searching in the
Graph

Objective Function

GA Optimization

Robust Analysis

Figure 3. The framework for optimization of
TDR operation location(s) and characteristics

for a general process flow.

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22
27

42
45

47

9 8

10

Figure 4. Example graphical representation of a complex

process flow.

Copyright  2003 by ASME 7

i.e., only when all the predecessors PRED(Y) of v(Y) have been
visited, then v(Y) could be visited.

WSS begins from the lowest-numbered vertex that belongs
to a Start Step then proceeds to search the next step. By
checking the type of the successor, the algorithm decides to
continue to search to the next Sequence Step or wait at the
Cross or End steps. After moving to the next step, the
corresponding computation of feature parameters of the
previous step is performed and the outcome is stored in a data
table in which all the property information associated with
process steps are recorded. If Cross or End types of steps are
encountered, the visitation status of all predecessors will be
checked. If all the predecessors have been checked, the
searching continues, if not, the search begins from another Start
Step type of vertex until the last Start Step vertex is visited. The
algorithm requires that the searching of the next step continue
only after all the branches of the present step have been visited.
There are waiting actions for the sequential search based on the
characteristics of the process flow. The searching process for
the complex process flow example shown in Figure 4 using
WSS is described below:

1. First, begin from the lowest number of Start Steps (2), (2)
→ (6), check whether all the other branches have been
searched, compute then wait;

2. (10) → (8), check the other branches and wait;
3. (25) → (14), wait;
4. (27) → (22), wait;
5. (29) → (7), wait;
6. (33) → (6), wait;
7. (42) → (45) → (47) → (9), wait;
8. (44) → (4) → (7) → (15) → (6) → (14), wait;
9. (53) → (70), wait;
10. (66) → (70) → (21) → (22) → (14) → (9) → (8), (8) is

an End Step, all the branches have met and the process
ends.

C. Multi-Objective Optimization Function

The objective of optimizing TDR location(s) and
characteristics to be minimized is the yielded cost of the entire
process flow (Becker and Sandborn 2001). The yielded cost we
are interested in is the final effective cost per product instance
(after the final processing step and/or TDR operation) divided
by the final product yield. This yielded cost gives a measure of
the effective cost per good product instance after all the
manufacturing and TDR operations are completed. The final
cost per product instance and yield are determined by
accumulating (sum or product) the individual process step costs
and yields and the TDR operation costs and yields (equation (5)
and (15)) in the appropriate sequence through the process.

The objective function in which feature parameters of all
possible TDR operations are considered can be derived from
sequential cumulative computation from the Start Steps to the
End Step. When the WSS algorithm traverses the entire process
flow, a cumulative function is computed to be used as the

objective function that needs to be minimized in the
optimization. The optimization problem becomes,

 ∑
=

∈

n

1i
m,2,1YXx

)xx(xCmin
iii

L (18)

where,
m = number of feature parameters to be optimized;
n = number of total process steps with all possible TDR

operations included;
CY = yielded cost of the process flow, cumulative cost

divided by final yield.

In the optimization, first the TDR operations are placed in
all possible locations or be chosen according to expert
suggestions. The fault coverage (fci), rework yield (Yri) and
rework attempts for the ith TDR operation need to be optimized
in order to minimize the total yielded cost of the process flow.
For example, for the complex process flow in Figure 4, there
are 22 (including the one location after the End Step - 8)
possible TDR operation locations following each of the process
steps if there were no specific location constraints as to where a
TDR operation could or could not be placed provided by the
user. If just fault converge and rework yield of the TDR
operations are to be optimized, the objective function can be
written as (19),

 [0,1]X ,)Y(fCmin
22

1i
r,cYXY,f ii

iric

∈∑
=

∈
. (19)

D. Optimization with Real-Coded Genetic Algorithms (RCGAs)
Complex process flows with hundreds of process steps are

not uncommon. A general optimization of such a process flow
requires an equally large stream of TDR operations resulting in
several hundred variables to be optimized for the tradeoff
analysis. To optimize feature parameters of possible TDR
operations in order to find the global optimum of yielded cost
in the process flow, RCGAs are used. RCGAs have the
advantage of requiring less storage than the Binary-Coded
Genetic Algorithms (BCGAs) and the accurate representation
of continuous parameters, which enables efficient optimization
of multi-parameter functions (Oyama et al. 1999).

With RCGAs integrated, a process flow cost optimization
modeling system according to the framework in Figure 3 has
been developed to determine the optimum placement and
characteristics of TDR operations in general process flows. The
system results in suggestions of where the TDR operations
should be inserted and not inserted, and what the optimal
values of feature parameters of testing and rework should be
based on the optimization analysis of the objective function.

OPTIMIZATION IN A COMPLEX PROCESS FLOW
For demonstration, the process flow shown in Figure 5 has

been used. All possible TDR locations have been marked in the
process. Table III shows the corresponding process step
properties (cost and yield); the characteristics of the TDR
operations 14-24 are solved for in the optimization process. The
cost and yield associated with the individual process steps is

Copyright  2003 by ASME 8

example data that is representative of high-end electronic
system assembly. As an example comparison analysis, the
optimum fault coverage and rework yield of all possible TDR
operations for various fixed cost values of test and rework are
shown in Figure 6. The test and rework step properties are
given in Table II except for the values are Cft and Cfr, which are
varied as indicated in Figure 6.

The algorithm begins by automatically placing TDR
operations in all possible locations: 14-24 in Figure 5. The
algorithm then determines the fault coverage and rework
characteristics of each TDR that minimize the final yielded
cost. Figure 6 shows that results from the optimization for
different assumptions about the fixed costs associated with the
test and rework. Figure 6(a) has low (inexpensive) test and
rework - Cft and Cfr are both small; as a result, 9 of the 11
possible locations for tests are present (i.e., have fault
coverages above the threshold for testing, which is a fault
coverage of 0.1). Because rework is also inexpensive in case
(a), rework is being done at all the actual test locations. The
Figure 6(a) result is intuitive, if test and rework are
inexpensive, then test and rework will be done after nearly

every process step. Figure 6(b) has inexpensive testing (same
as case (a)), but the rework is expensive. As a result,
significantly fewer rework opportunities are actually exercised.
Notice also that the optimum test locations (and fault
coverages) change due to the inclusion or exclusion of rework
possibilities, even though the characteristics of the testing are
the same. Figure 6(c) shows the same test costs as 6(a) and (b),
but no rework is allowed – the optimum test locations and fault
coverages again differ from cases 6(a) and 6(b) and the average
value of fault coverage increases to compensate for the loss of
rework capabilities (the optimization algorithm is attempting to
maximize the final yield in order to minimize cost divided by
yield). Figure 6(d) has expensive test and expensive rework.
As a result, only 3 of 11 possible test locations are used (Test
20, 23 and 24 only), however, rework is included with all three
of these tests. In this case, the majority of the testing is focused
on Test 24 near the end of the process indicating that if test is
expensive and defects introduced in the process are spread over
the entire process (as opposed to being focused on a single
process step), the optimum test location is near the end of the
process, which is intuitive.

Figure 6 provides example optimization results for an
example process flow. Figure 7 shows example convergence
characteristics of the yielded cost of the complex process flow
with the number of generations of the RCGAs.

1 TDR
(15) 2 TDR

(16) 3

4 TDR
(14) 6 TDR

(18) 7

11 TDR
(19) 12 TDR

(20)

TDR
(17)

TDR
(21)

8

9

TDR
(22)

TDR
(24) 10

13

TDR
(23)

Figure 5. An example process flow with all possible TDR operations.

Table III. Characteristics of the process steps in
Figure 5 (note, there is no step 5)

Process Step Cost ($) Yield (fraction)
Input to 1 41 0.91
Input to 4 60 0.36
Input to 9 37 0.42

Input to 11 9 0.95
Input to 13 75 0.96

1 21.1 0.95
2 12.3 0.88
3 14 0.89
4 23.8 0.94
6 45 0.96
7 11.3 0.86
8 33.8 0.92
9 13 0.9

10 15 0.92
11 60 0.95
12 78 0.91
13 54 0.94

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation Number (N)

Y
iel

de
d

Co
st

 ($
)

Cft= $50 and Cfr= $100

Cft= $1 and no rework

Cft= $1 and Cfr= $1

Cft= $1 and Cfr= $100

Figure 7. Optimization of yielded cost
for various levels of fixed cost of test and rework

Copyright  2003 by ASME 9

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

∗

No Test

∗

∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

∗

No Test

∗

∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

R
ew

or
k2

2

R
ew

or
k2

3

R
ew

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

∗ ∗

No Test∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

R
ew

or
k2

2

R
ew

or
k2

3

R
ew

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

∗ ∗

No Test∗

(a) Cft= $1 and Cfr= $1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

∗

No Test∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

R
ew

or
k2

2

R
ew

or
k2

3

R
ew

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

No Test∗
No Rework

∗º º º ºº

º

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

∗

No Test∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

∗

No Test∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

R
ew

or
k2

2

R
ew

or
k2

3

R
ew

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

No Test∗
No Rework

∗º º º ºº

º

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

R
ew

or
k2

2

R
ew

or
k2

3

R
ew

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

No Test∗
No Rework

∗º º º ºº

º

(b) Cft= $1 and Cfr= $100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

∗ ∗∗

∗ No Test

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

∗ ∗∗

∗ No Test

(c) Cft= $1 and no rework

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

No Test

∗∗ ∗ ∗ ∗ ∗ ∗∗

∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

R
ew

or
k2

2

R
ew

or
k2

3

R
ew

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

No Test

∗∗ ∗ ∗ ∗ ∗ ∗∗

∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

No Test

∗∗ ∗ ∗ ∗ ∗ ∗∗

∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Te
st

14

Te
st

15

Te
st

16

Te
st

17

Te
st

18

Te
st

19

Te
st

20

Te
st

21

Te
st

22

Te
st

23

Te
st

24

Test Number

O
pt

im
um

 F
au

lt
C

ov
er

ag
e

No Test

∗∗ ∗ ∗ ∗ ∗ ∗∗

∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

R
ew

or
k2

2

R
ew

or
k2

3

R
ew

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

No Test

∗∗ ∗ ∗ ∗ ∗ ∗∗

∗

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ew

or
k1

4

R
ew

or
k1

5

R
ew

or
k1

6

R
ew

or
k1

7

R
ew

or
k1

8

R
ew

or
k1

9

R
ew

or
k2

0

R
ew

or
k2

1

R
ew

or
k2

2

R
ew

or
k2

3

R
ew

or
k2

4

Rework Number

O
pt

im
um

 R
ew

or
k

Y
ie

ld

No Test

∗∗ ∗ ∗ ∗ ∗ ∗∗

∗

 (d) Cft= $50 and Cfr= $100

Figure 6. Computed optimum feature parameter values for TDR operations in the process flow shown in Figure 5.

Various fixed test and rework costs used in (16) and (17) assumed, other parameters given in Table II.

Copyright  2003 by ASME 10

SUMMARY
 This paper describes a framework for the optimization of
Test/Diagnosis/Rework (TDR) location(s) and characteristics in
a manufacturing processes A new search algorithm is
developed and used to analyze complex process flows and to
obtain values of a multi-objective function with a stream of
feature parameters included. An optimization modeling system
with Real-Coded Genetic Algorithms (RCGAs) integrated has
been developed to optimize critical parameters and possible
TDR locations for general process flows. The methodology
developed and demonstrated in this paper guides the placement
of TDR operations in practical manufacturing processes and
has been specifically applied to electronic systems
manufacturing (board assembly). The ability to optimize the
TDR operations can also be used as the feedback to a Design
for Test (DFT) analysis of the electronic systems showing
which portion should be redesigned to accommodate the testing
for a higher level of fault coverage and where there is less need
for test to decrease the cost of products.

REFERENCES
Abadir, M., Parikh, A., Bal, L., Sandborn, P., and Murphy, C.,

“High Level Test Economics Advisor,” Journal of
Electronic Testing: Theory and Applications, 1994, Vol. 5,
No. 2&3, pp. 195-206.

Agrawal, V., Seth, S., and Agrawal, P., “Fault Coverage
Requirement in Production Testing of LSI Circuits,” IEEE
J. of Solid-State Circuits, 1982, Vol. SC-17, No. 1, pp. 57-
61.

Becker, D., and Sandborn, P., “One the Use of Yielded cost in
Modeling Electronic Assembly Processes,” IEEE Trans. on
Electronics Packaging Manufacturing, July 2001, Vol. 24,
pp. 195-202.

Chartrand, G., and Oellermann, O.R., Applied And Algorithmic
Graph Theory, McGraw-Hill, Inc., 1993.

Choi, K., and Chatterjee, A., “Efficient Instruction-level
Optimization Methodology for Low-Power Embedded
Systems,” Proc. of the 14th Int. Symposium on System
Synthesis, 2001, pp. 147-152.

Dislis, C., Dick, J.H., Dear, I.D., Azu, I.N., Ambler, A.P.,
“Economics Modeling for the Determination of Test
Strategies for Complex VLSI Boards,” Proceedings of the
International Test Conference, 1993, pp. 210-217.

Goel, P., “Test Generation Costs Analysis and Projections,”
Proc. of Design Automation Conference, 1980, pp. 77-84.

Henderson, C.L., Williams, R.H., and Hawkins, C.F.,
“Economic Impact of Type I Test Errors at System and
Board Levels,” Proceedings of the International Test
Conference, 1992, pp. 444-452.

Oyama, A., Obayashi, S. and Nakahashi, K., “Wing Design
Using Real-coded Adaptive Range Genetic Algorithm,”
Proceedings of 1999 IEEE Int. Conf. on Systems, Man, and
Cybernetics, 1999, Vol. 4, pp. 475-480.

Rao, N., “On Parallel Algorithms for Single-Fault Diagnosis in
Fault Propagation Graph Systems,” IEEE Trans. on

Parallel and Distributed Sys., Dec. 1996, Vol. 7, pp. 1217-
1223.

Rhines, W., Keynote address at the Semico Summit, Phoenix,
AZ, March 2002.

Sandborn, P.A., and Moreno, H., Conceptual Design of Multi-
chip Modules and Systems, Kluwer Academic Publishers,
Boston, 1994.

Scheffler, M., Ammann, D., Thiel, A., Habiger, C., and Troster,
G., “Modeling and Optimizing the Costs of Electronic
Systems,” IEEE Design & Test of Computers, 1998, Vol.
15, No. 3, pp. 20-26.

Tarjan, R.E., “Depth-First Search and Linear Graph
Algorithms,” SIAM J. Computing, 1972, Vol. 1, No.2,
pp.146-160.

Tegethoff, M., and Chen, T., “Defects, Fault Coverage, Yield
and Cost, in Board Manufacturing,” Proceedings of the
International Test Conference, 1994, pp. 539-547.

Trichy, T., Sandborn, P., Raghavan, R., and Sahasrabudhe, S.,
“A New Test/Diagnosis/Rework Model for Use in
Technical Cost Modeling of Electronic Systems
Assembly,” in Proceedings of the International Test
Conference, Nov. 2001, pp. 1108-1117.

Turino, J., Design to Test – A Definitive Guide for Electronic
Design, Manufacture, and Service, Van Nostrand
Rienhold, New York, NY, 1990.

Williams, R.H., Wagner, R.G., and Hawkins, C.F., “Testing
Errors: Data and Calculations in an IC Manufacturing
Process,” Proceedings of the International Test
Conference, 1992, pp. 352-361.

Williams, T.W., and Brown, N.C., “Defect Level as a Function
of Fault Coverage,” IEEE Transactions on Computers,
1981, Vol. C-30, No. 12, pp. 987-988.

