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 
Abstract— Renewable energy from wind and solar are 

considered to be the main alternatives to fossil fuels. The costs of 
renewable energy technologies are high and without tax credits 
they are not currently competitive with fossil fuels in many 
markets. Improvements in the performance or reduction in 
operational costs will have significant impacts on the price of 
renewable energy and ultimately impact their competitiveness. 
New technologies targeted at improving the efficiency of the 
current systems or reducing their life-cycle costs will help, 
however these technologies are expensive and detailed cost 
tradeoff and return on investment (ROI) analysis is required to 
make business cases for them. In this paper we formulate an ROI 
model and describe its implementation in a stochastic discrete-
event simulator to calculate financial tradeoffs and enable business 
cases for technology insertion into wind farms. The new ROI 
model includes changes in revenue and operations costs (including 
changes in reliability due to the technology insertion) and 
introduces the concept of identical timeline conditions to 
guarantee a meaningful ROI calculation. A case study for using 
LIDAR to increase the efficiency and improve the reliability of 
wind turbines in a wind farm is provided. 
 

Index Terms—Wind Energy, Cost Modeling, Return on 
Investment, ROI, Monte Carlo Simulation, Discrete-Event 
Simulation, Economic Analysis, LIDAR, reliability 
 

I. INTRODUCTION 

SSUES with fossil fuels such as a climate change, market 
volatility, geopolitical concerns (energy security), and 

pollution have convinced many nations to look to alternative 
sources of energy. Wind energy is a sustainable source of 
energy that many countries are considering as a replacement for 
fossil fuels. The potential for wind energy production in the 
United States is 32,000 TWh for onshore and 17,000 TWh for 
offshore installations [1]. The American Wind Energy 
Association (AWEA), reported that in November 2015, United 
States surpassed 70 GW of wind power production [2]. 
Currently nearly all US wind energy production is onshore with 
several offshore projects under study or construction [3]. With 
a 5-year extension of the Production Tax Credits (PTC) in the 
US 2016 budget, it is expected that more onshore and offshore 
projects will come online in the near future. By 2050, 80% of 
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US energy consumption could be generated from renewable 
sources [4-5]. 

The total life cycle of a wind farm can extend more than 30 
years (this includes site exploration, commissioning, lease, 
construction, operation and decommissioning), however, the 
operation period of a wind farm is usually 20 years (also 
referred to as support time). Costs occurring in this period are 
called operation and maintenance (O&M) costs and are the 
second largest cost contributor (behind the capital costs) to the 
total life-cycle cost of a wind farm. For example, in offshore 
installations, O&M costs represent between 24 to 31% of the 
total life-cycle costs [6]. 

During the support time, the wind farm operation generates 
revenue, which is a positive cash flow. The O&M costs 
throughout the life cycle generate a negative cash flow. Turbine 
manufacturers and farm owners constantly look for ways to 
increase the revenue cash-ins and reduce the costs, i.e., cash-
outs. This can be achieved by adopting new methodologies in 
O&M, spare parts inventory management, making design 
changes to reduce the material and manufacturing costs, adding 
new technologies that increase the revenue production, 
implementing systems that extend maintenance cycles, etc. All 
of these methods or technologies require an investment, and in 
order to evaluate their financial benefits, a return on investment 
(ROI) analysis is required. 

An ROI model for evaluating new technologies for 
renewable energy sources has to include the effects of the 
technology on both revenue production increases and O&M 
cost avoidances. The ROI model covers the cash flows during 
the support time and is a useful tool for the wind farm owners 
and operators. In this paper, we are focusing on the 
implementation of technologies that are used to improve the 
existing installed or soon to be installed systems (the 
technologies we are interested in are not necessarily included in 
the system at the design stage, and they may be added later in 
the turbine’s life-cycle). It is important to point out that this 
paper investigates the ROI of adding technologies to the 
renewable energy systems and not the general ROI of using 
renewable energy. 

The ROI model described in this paper is stochastic, meaning 
it considers the probabilistic nature of model inputs such as 
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wind speed and the failure distributions that describe a 
component’s reliability. In the case of revenue generation, 
probability distributions for wind speeds will be used in 
conjunction with the turbine’s power curve for the stochastic 
analysis as opposed to a deterministic approach, which usually 
uses the capacity factor to calculate an average of energy 
production over a period of time. The model is implemented in 
a discrete-event simulation (DES) where failures and their 
subsequent maintenance activities are the events that change the 
state of the system (a wind turbine). The definition of failure in 
this paper is an event that requires a maintenance activity. 
Occurrence of a failure may or may not result in a complete 
shut-down of the system and the subsequent maintenance event 
could be activities such as repair, replacement or just an 
inspection. 

O&M cost modeling includes two steps. The first step is the 
reliability modeling of the components where the failure 
occurrence and their timings are modeled. In this step, 
reliability parameters for components are used to predict a 
failure time; these are the failure events in the DES. The second 
step is modeling the maintenance activities and their associated 
costs. Maintenance activities are based on the maintenance 
policy where farm operators perform maintenance actions that 
can be corrective (break-fix), preventive (scheduled routine 
maintenance) or predictive (condition-based maintenance). 
These are the maintenance events in the DES. 

The ROI model described in this paper captures the changes 
that the insertion of a new technology will induce on the 
reliability of turbine components, independent of the 
maintenance strategy. In other words, the O&M cost variations 
solely due to changes in the timing of the failures will be 
accounted for even in cases where their subsequent 
maintenance actions stay the same. 

A. Literature Review 

There are many existing studies addressing O&M cost 
modeling of wind turbines and their optimization, these studies 
generally target finding the best maintenance policy, e.g., [7-
12]. These works focus on calculating the maintenance costs of 
turbines (a single turbine or a group of turbines) through 
analytical methods [7–9] or simulation [10–12] over a specified 
period of time.  

Many studies have investigated the financial benefits of 
implementing condition monitoring systems (CMS) on wind 
turbines, e.g., [13-21]. These studies investigate the changes in 
the O&M costs after implementing the CMS systems. The 
reference case in these studies is generally a maintenance policy 
without the CMS and then the technology insertion case is a 
new maintenance policy with CMS. The financial benefit is the 
difference in the O&M costs between the two cases. The focus 
of these studies is minimizing the cost of resolving (or 
avoiding) failures. As for generating failure times, some studies 
use failure rates [13-17] to generate a failure time while others 
consider the stochastic nature of the failure occurrences and use 
reliability distributions [18-20]. In [18–20], failure times were 
generated stochastically and the same values were used for the 
cases with CMS and without CMS. 

Works that expressly calculate ROI are rare. May et al. [15] 
used a hidden Markov method to model O&M costs of a wind 
farm by generating failure times using components’ failure 
rates. They use a preventive maintenance strategy as a reference 
case and CMS based predictive maintenance as the technology 
case. They discuss ROI qualitatively but did not calculate any 
values. Erguido et al. [21] investigated the effects of using CMS 
on maintenance through simulation. Although their work is 
primarily focused on maintenance modeling and cost 
calculations, they introduce an ROI formula that only includes 
revenue parameters and then use it to calculate a deterministic 
ROI associated with several scenarios. 

While the existing models provide the tools needed to 
calculate the O&M costs and quantify the economic benefits of 
changing the maintenance policy of wind turbines, they are not 
generally capable of calculating the ROI for the cases where a 
new technology changes the reliability of turbine components. 

In other (non-wind) fields such as electronic systems, 
stochastic ROI models for the implementation of condition 
monitoring systems have been developed [22-23], but these 
models also only focus on changes in the maintenance policy 
due to the implementation of CMS. They are not capable of 
incorporating revenue generation and do not accommodate the 
calculation of ROI if the reliability distributions are affected by 
technology insertion. 

Although there are some O&M models that consider the 
stochastic nature of the parameters, an ROI calculation (see 
Section II) when the new technology affects the reliability of 
the components is considerably more complicated than simply 
running an O&M model with and without the technology 
insertion and comparing the results. For example, in works by 
Besnard et al. [18] and Van Horenbeek et al. [19], the reliability 
distributions remain unchanged and can be used for the two 
cases of with technology and without technology, but this is not 
a feasible approach in cases where the reliability distributions 
change. In order to make a viable comparison for the cases of 
with and without technology in a stochastic model, the two 
cases have to have identical conditions to make the analysis 
meaningful, and insuring identical conditions is non-trivial (see 
Section III). 

In this study, we formulate an ROI model, explain its 
application in a stochastic model for cases where the new 
technology changes the reliability of the system and illustrate 
its implementation with a case study. In the case study the 
particular technology insertion of interest is light detection and 
ranging (LIDAR) systems on wind turbines, which impacts 
both the reliability of key subsystems and the efficiency of the 
turbine, subsequently effecting the turbine’s revenue 
generation. 

II. ROI MODEL FORMULATION 

The common definition of ROI is the ratio of gain as a result 
of an investment to the investment, 

                       

Return-Investment
ROI=

Investment                         (1) 
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For the applications considered in this paper, investment cost 
is the cost of purchasing the technology, maintaining it, keeping 
an inventory of the spare parts needed to support the technology 
and any other costs directly associated with the technology.  

‘Return’ are the changes that the investment makes to the 
life-cycle cost of the system.  Return, in the context of this 
paper, is a combination of revenue increase due to additional 
energy generation and avoided cost due to reliability 
improvements. ‘Return’ is cumulative, which means that at any 
instant in time, the value of the ‘return’ is the accumulation of 
all ‘returns’ from time zero to that instant in time. The ‘return’ 
and ‘investment’ terms are calculated using a DES, and since 
the DES models a timeline, ROI is a function of time. At the 
beginning of time, the ‘return’ is zero so the ROI is -1. As the 
time progresses, depending on the financial effects of the 
investment, the ROI moves away from -1 in either direction. 
Depending on the expected life of the new technology (if it has 
a lifespan that is less than the system it is added to, it will have 
to be purchased again), the investment costs and the recurring 
maintenance costs become functions of time as well.  

During the support time, a wind farm produces energy, which 
generates revenue and also requires maintenance that costs 
money. Any new technology that is implemented on a wind 
turbine, can affect either the revenue or maintenance costs or 
both. If the new technology lowers the O&M costs, this would 
be considered avoided costs.  

The ‘return’ in (1) can be expanded to include the returns due 
to both O&M cost avoidances and the extra revenue generation 
(revenue gain), 

 

( ) -
ROI=

AC RG I

I



 (2) 
 
where: 

AC = avoided costs 
RG = revenue gain 
I = investment 

 
In order to calculate the ‘avoided costs’ the total life-cycle 

cost (LCC) of the wind farm during the support time has to be 
considered. LCC includes all the maintenance costs (CO&M), 
inventory costs (Cinv), recurring leasing costs (CL), insurance 
costs (CI), administrative costs (CA) and any other costs (Coth). 
 

         &O M inv L I A othLCC C C C C C C               (3) 
 

Avoided costs are the difference between the LCC for the 
cases with and without the technology insertion: 

 

               - -no tech techAC LCC LCC                      (4) 
 

 
1 An alternative solution would be to use renewal functions. While using 

renewal functions is more computationally efficient, it represents an analytical 
simplification of a sequence of events.  The DES is an actual model of the real 
(sampled) sequence of events.  A renewal function determines how many 
renewals occur during a chosen period of time, but does not determine the actual 
times when those renewals take place and a renewal function cannot provide 
the sequence of events when multiple different components are involved.  In 

Costs that are not affected by the insertion of the new 
technology will be the same with and without the new 
technology and are considered to be a zero net sum gain or loss.  
If, for example, the insertion of a new technology does not 
affect any of the cost contributions in (3) except the CO&M (this 
is the situation in the case study discussed in Section IV), then 
(4) becomes a function of only the O&M costs: 

 

   -& &-
no tech techO M O MAC C C

                             (5) 
The ‘revenue gain’ calculations are straightforward. The 

‘revenue gain’ is simply the difference between the revenues 
with and without the new technology insertion. 

 

             --tech no techRG R R                               
(6) 

 
By substituting (5) and (6) into (2), the relation for the ROI 

becomes: 
 

-& & -( - ) ( - ) -
ROI = no tech techO M O M tech no techC C R R I

I


              (7) 

 
It is important to pay attention to the meaning of the two 

‘returns’, the O&M ‘return’ (AC) is less money spent for the 
maintenance of the wind turbines, while the revenue ‘return’ 
(RG) is extra money generated due to better performance 
(higher efficiency) of the turbines. 

Although (7) is relatively simple, the real challenge is how to 
implement the solution so that “identical timeline conditions” 
(defined in Section III) are enforced when the costs and 
revenues in (7) are computed in a stochastic environment. 

III. ROI MODEL IMPLEMENTATION  

The ROI model in this paper has been implemented as a 
stochastic discrete-event simulation (DES) that models a 
timeline of events whose order is determined by sampling the 
reliability distributions of the components.1  The timeline is 
then costed, and the process is repeated many times to construct 
appropriate statistics. 

A. Identical Timeline Conditions Requirement 

Calculation of the ROI is performed using a Monte Carlo 
analysis approach that requires dependent sampling of parallel 
life cycles for cases with and without technology insertion. The 
ROI calculation is the comparison of two cases consisting of a 
base or ‘no-tech’ situation, which is the operation of the system 
without the new technology and a new situation or ‘tech’ 
situation, which is the operation of the system after the insertion 
of the new technology. In order to make a viable comparison, 

addition, renewal functions implicitly assume that the reliability distribution is 
the same before and after a maintenance event, which may not be the case.  We 
have used DES because it allows more fidelity in the cost modeling process and 
the identical timeline conditions constraint imposed by the ROI calculation 
creates a dependency between the technology and no-technology cases, which 
is not straightforward to model with renewal functions. 
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the two cases have to be evaluated under ‘identical timeline 
conditions’, which means that the external conditions that 
contribute to the timing and/or costs of the events are the same, 
e.g., wind speeds and energy prices. The external conditions 
may be sampled from distributions but the same sequence of 
samples at the same times must be used. For example, a wind 
turbine without LIDAR is subjected to 15 m/s wind at 10:00 am 
on August 1, 2017 when the energy price is 0.2 $/kWh. The 
same turbine with LIDAR must also be subjected to 15 m/s 
wind at 10:00 am on August 1, 2017 when the energy price is 
0.2 $/kWh. This example, demonstrates identical timeline 
conditions.  In this simple example, the price paid for the energy 
generated is the same, but the revenue may be different because 
of the improved efficiency of the turbine. In this case, the 
requirement for identical timeline conditions for revenue is met 
by using identical wind speeds for both cases. 

The case for failure times is not as straightforward as wind 
speeds. Component failures are a function of various 
parameters, material microstructures, environmental 
conditions, etc. The environmental conditions put loads on the 
components (here we only focus on cyclic loads and not 
overstress loads), which cause stresses. These stresses will 
eventually result in component failures. If new technologies can 
be adopted that decrease the loading on a component, a 
subsequent reliability improvement can be obtained. This will 
change the reliability distributions of the components.  

It is challenging to compare the two cases under identical 
timeline conditions when the reliability inputs of the model are 
stochastic and a DES is used. In order to construct the timeline, 
probability distributions corresponding to the reliability of 
components are sampled to get failure times and their 
subsequent maintenance events, which then will be costed. If 
there was only one case in the analysis (e.g., no-tech), this could 
be done using straightforward Monte Carlo analysis. However, 
when there are two cases (such as those compared in the ROI 
calculations) with reliability distributions that change, the 
analysis becomes complicated due to stochastic nature of the 
inputs. Obviously when the reliability distributions change due 
to the implementation of a new technology, identical failure 
time samples cannot be used (unlike the wind speed samples 
that were used for both cases). On the other hand, running 
Monte Carlo twice (once for tech and once for no-tech case) 
independent of each other will not guarantee the identical 
timeline conditions. Even more important, once the reliability 
of the components are improved, the new failure times have to 
be later than the failure time for the no-tech case. 

Details on how the identical timeline conditions are 
implemented are provided in the Appendix.  The Appendix also 
discusses the specific implementation of the identical timeline 
conditions to systems where the technology insertion changes 
the reliability of the system. 

IV. LIDAR IMPLEMENTATION CASE STUDY 

In this section, we implement the methodology for 
calculating the ROI for the use of LIDAR devices on wind 
turbines. LIDAR devices are mounted on the turbine nacelle 
and use laser beams to detect the wind speed and direction 

ahead of the turbine. The information can then be used for the 
minimization of yaw error. Yaw error is the angle between the 
wind flow direction and the rotor’s central axis in the horizontal 
plane. The presence of yaw error reduces the energy production 
of the turbine (less revenue) and puts extra cyclic stresses on 
components, which results in earlier than expected failures and 
subsequent maintenances (greater O&M costs).  Note that 
LIDAR has many other applications such as collective pitch 
control to reduce the structural loads on the turbine, power 
curve measurement, etc. In the example in this study, we only 
consider LIDAR’s minimization of the yaw error and its effects 
on turbine efficiency and reliability. 

The ROI model is implemented for a wind farm consisted of 
50 turbines. The turbines have a power rating of 4.2 MW, hub 
height of 135 m and rotor diameter of 127 m is assumed with 
cut-in speed of 3 m/s, cut-out of 25 m/s and rated speed of 14 
m/s. Figure 1 shows the turbine’s assumed power curve.  

 The system is a single turbine where we assume that the 
failure of a single component results in the total shut down of 
the turbine. The turbine is assumed to have only two states, 
operational and stopped. There are 5 components modeled for 
the turbine: blades, gearbox, generator, pitch control and the 
electronics. There are various studies that investigated the 
reliability of turbine components, e.g., [24–27]; here we use the 
values from Spinato et al. [26], where failure is defined as the 
total loss of functionality for the component and each failure 
results in a component replacement. In this case study, only 
failure events that result in a component replacement are 
considered, i.e., no repairs are considered. The reliability 
modeling is stochastic and failures follow 2-paramter Weibull 
probability distributions. Failures and their subsequent 
maintenance events are modeled in a DES. Maintenance is 
predictive for the first four components and corrective for the 
electronics. It is assumed that upon receiving an alert from the 
monitoring system, a maintenance crew will be deployed to 
perform the required maintenance. The replacements are 
assumed to be as good as new. Each maintenance event leads to 
a downtime of the turbine. Maintenance costs consist of the 
replacement component costs, transportation, labor, 
installation, etc. The maintenance event costs are assumed to 
remain the same over the support life of the turbine.  Table I 
shows the Weibull parameters that describe the failure of the 

 
Figure 1- Power curve of a 4.2 MW wind turbine 
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components [26], maintenance costs [13] and the downtimes 
associated with each failure [28]. 

All cash flows are discounted to year 0 using a discount rate 
of 7%/year. The terms used in the ROI calculation in (7) at a 
particular point in time are the present value of all cash flows 
from the beginning of support time to that point in time. 

Yaw error affects the reliability of the first 4 components in 
Table I. It is assumed that the reliability parameters in Table I 
represent cases where there is an average of 7˚ yaw error. This 
is the average value observed in the field [29]. It is assumed that 
the LIDAR can reduce the yaw error values to as low as 0˚. We 
assume that this will result in a 20% improvement in the 
reliability. The calculations for reliability improvement come 
from an earlier study [30] where results from an aero-elastic 
analysis [31] were used in a Basquin model to calculate the 
relation between reliability and stresses. It is important to point 
out the uncertainties associated with aero-elastic models, where 
the output of the model can have significant uncertainties (for 
further discussion on this topic see [32–35] and Section IV.B of 
this paper). In the Weibull distribution, the scale parameter 
represent 63% unreliability (63% of the samples have failed by 
the scale parameter time), therefore, a 20% improvement in 
reliability, translates into a 20% improvement in the scale 
parameter. 

The assumed mechanism of yaw error correction using 
LIDAR is as follows. There is a single LIDAR device for the 
whole farm. The LIDAR will be installed on the turbine’s 
nacelle for a period of time, collects data that will be used to 
correct the yaw error on that turbine. After two weeks, the 
LIDAR will be taken down and moved to the next turbine in the 
farm. With 50 turbines in a farm and a single LIDAR, each 
turbine gets the LIDAR once every two years. After the LIDAR 
is removed from the turbine, the yaw error remains minimized 
for a period of time and then regresses back to an uncorrected 

value (7˚ in this example) as shown in Figure 2.  
Yaw error affects the speed of the wind flow as shown in (8). 

This means that the presence of yaw error lowers the wind 
speed on the blades.  

 

                               3cos ( )yawed flowV V                          (8) 

where: 
V = wind speed 
α = yaw error 
 
In order to calculate the power production, wind speeds are 

sampled from the corresponding distribution, effects of yaw 
included, then the corresponding power based on the turbine 
power curve shown in Figure 1 is calculated. The same wind 
speeds are used for both cases of LIDAR and no-LIDAR as 
described in Section III, however the yaw error for the two cases 
are different. The no-LIDAR case has a high yaw error (e.g., 
7˚), while the LIDAR case has a lower yaw error determined 
from Figure 2.  

The LIDAR purchase price is assumed to be $120,000. The 
life span of a LIDAR is 5 years and a new LIDAR has to be 
purchased after this period is over. The LIDAR maintenance 
costs are $12,000 every 2 years.  The costs of LIDAR, which 
are the ‘investment’ costs in the ROI formulation, are 
discounted using a 7%/year discount rate like the other cash 
flows. In this case study, the costs associated with circulating 
the LIDAR between turbines are not included. 

A. Case Study Results  

The model using the methodology explained in Sections II 
and III, was used to generate the progression of ROI values for 
the entire wind farm over time. At one-year time increments, 
the costs for the particular year were calculated, discounted and 
used in the (7) to calculate the corresponding ROI for that year. 

Figure 3 shows the results of running a Monte Carlo analysis 
for 10,000 timelines of the entire wind farm. The white line in 
Figure 3 is the progression of ROI over time for a single 
example timeline. As it can be seen, ROI is a function of time. 
The drops in ROI are attributed to LIDAR maintenance costs or 
the purchase of a new LIDAR device. A positive ROI is 

 
Figure 2- Yaw regression over time after LIDAR correction 
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TABLE I 
MAINTENANCE INPUT PARAMETERS FOR THIS CASE STUDY 

Component 
Scale 
Parameter 
(years) [26] 

Shape 
Parameter 
[26] 
 

Average 
Downtime 
(days) [28] 

Average 
Maintenance 
Cost ($) [13] 

Blade 10.323  1.042 7 200,000 
Gearbox 45.72 1.835 5 300,000 
Generator 27.43 1.2 3 150,000 
Pitch 
Control 

4.72 1.57 
 

2 50,000 

Electronics 1.471 0.87 3 10,000 



IEEE Transactions on Sustainable Energy, vol. 9, no. 1, pp. 284-292, January 2018 

considered to be a successful investment from a financial 
viewpoint. Figure 4 shows the distribution of ROI values at the 
20th year (the end of support time). The standard error for 
10,000 timelines is less than 1%.  

B. Case Study Sensitivity Analysis  

A sensitivity analysis on the reliability improvement values 
for the components due to yaw error correction was performed 
to investigate the effects of uncertainties that are associated 
with the aero-elastic analysis. Different yaw error corrections 
result in different reliability improvements. The middle line in 
Figure 5 are the values used to generate Figure 4. In the 
uncertainty analysis, we incrementally change the reliability 
improvement values. The results of the sensitivity analysis are 
shown in Figure 6 with the middle point (0 on the horizontal 
axis) representing the results of Figure 4.  In Figure 6, 100% 
drop (-100 on the horizontal axis of Figure 6) in the assumed 
reliability improvement percentage means that there is no 
reliability improvement due to the yaw error correction. A 
100% increase in the default reliability improvement 
percentage values means all the values of the middle line in 
Figure 5 will double. 

It can be seen that for the left end (-100) of the sensitivity 
analysis in Figure 6 the average values of ROI drop to values 

close to zero. Based on Equation 7 and Figure 3, ROI starts at -
1, so if there is no reliability improvement due to LIDAR, the 
energy production improvement still has a positive contribution 
to the overall ROI.  The sensitivity analysis also indicates that 
the ROI could be 4 or greater; however there is a diminishing 
return and uncertainties are larger as the reliability 
improvement increases. 

V. DISCUSSION AND CONCLUSION 

In the ROI formula (7), the technology and no technology 
terms (for both revenue and O&M) are not independent of each 
other. For calculating these terms a dependency between tech 
and no-tech scenarios has to be considered in order to make the 
analyses meaningful. The calculations have to satisfy the 
requirement of having identical timeline conditions between the 
two cases so the conditions that affect the system behavior stay 
identical for both cases of tech and no-tech. If the insertion of a 
technology improves the reliability of the system, the time-to-
failures for the technology case are longer than the no 
technology case, as a result, there has to be a dependency 
between the sampling of the time-to-failure times between 
technology and no technology cases.  

The methodology explained in this paper focuses on the 
technologies that affect the reliability of components, meaning 
the insertion of the technology changes the failure time. This 
methodology is independent of the maintenance policy applied 
to the wind turbines. In cases where the maintenance actions 
change because of the new technology, the ROI model 
developed here is also applicable. Regardless of what the new 
maintenance policy is, the requirement of identical timeline 
conditions must apply to the generation of stochastic 
parameters in the modeling. 

Equation (7) can be broken into its components to calculate 
ROI only considering revenue generation or only considering 
the O&M costs. This is applicable to situations where one cash 
flow contribution dominates the others. However, it is 
important to note that the total ROI in (7) is not the sum of 
revenue ROI and O&M ROI.  

In the case study in this paper, we looked into the application 

 
Figure 4- Histogram of possible ROI outcomes at the end of support time 
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Figure 6- ROI Sensitivity to variations of improved reliability percentage 
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Figure 5- % improvement in reliability as a function of the yaw error that 
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of LIDAR for yaw error correction.  Although the case study in 
this paper assumes a single LIDAR for the whole wind farm, 
the ROI analysis could be used to find an optimum number of 
LIDAR devices for a wind farm that yields the maximum ROI. 
It is important to point out the uncertainties in several inputs in 
this model. For example, as discussed in the case study, the 
reliability improvement of the components due to yaw error 
correction, comes from an aero-elastic study that may have 
significant uncertainties.  Improving the aero-elastic models 
may be necessary to obtain more accurate results. 

Future work will focus on the ability to have more than one 
LIDAR circulating in a farm, variable LIDAR stay time on a 
turbine and the determination of the optimum number of 
LIDARs for a farm with a known total power capacity and 
number of turbines. A more detailed LIDAR application and 
optimization will allow a more thorough sensitivity analysis to 
be performed to understand how ROI is affected by each input 
parameter.  

APPENDIX - CREATING IDENTICAL TIMELINE CONDITIONS 

As mentioned in Section III, the timeline for O&M is built 
by sampling reliability distributions. Each sample has a value 
that is generated from a probability distribution function (PDF) 
while the cumulative distribution function (CDF) gives the 
probability of occurrence of this particular sample at or earlier 
than its value.  This process creates a group of samples that will 
eventually form the failure times for all the components of a 
turbine. We refer to this group as the failure time set, which has 
a corresponding probability set. The sequence of numbers in 
these sets is important, a change in the failure times sequence 
will change the sequence in the probabilities set as well. 

A. Generating Number Sets for Identical Timeline Conditions  

The O&M costs of a particular turbine over the 20 years of 
support time is in part the result of failures that occur during 
this period. Assuming a simple case where the wind turbine has 
only one component whose failure times follow a probability 
distribution, for one particular timeline, the first failure time is 
the value of the first sample from the distribution. The second 
failure time is the value of second sample plus the failure time 
for the first sample and so on (this simple illustration assumes 
that the system is instantaneously restored upon failure). This is 
expressed in (A1). 

                   1

( )
n

n V i
i

FT S



                            (A1) 

where: 
FTn = failure time of the nth failure measured from the start 

of the simulation 
SV = value sampled from the failure distribution 
 
Three sets can be defined, a set of values {SV}, a set of 

probabilities {SPr} and a set of failure times {SFT}. This is 
shown in Figure A1, where Pr is the probability of a sample 
taking on the value of S or less. 

A path is one possible outcome of the O&M cost after the 
calculations of costs for each failure. The sequence of the 

samples in every set is important, if the sequence changes, the 
path will change. Since there are infinite possible combinations 
of the {SFT} set, there are an infinite number of possible paths. 

For a turbine that has multiple components, each with 
stochastic failure times, the process of sampling and calculating 
the failure time for each component is the same. However, the 
problem becomes a two-dimensional matrix, with one 
dimension (rows) representing the components of the turbine 
and one dimension (columns) representing the failure events. 
Three matrices can be defined for value, probability and failure 
time. Each row in a matrix is a subset. The union of all subsets 
in a matrix after reordering the elements considering the 
sequence of events becomes a set. 

Since the turbine is a system comprised of several 
components, the set of failure times is the failure times of 
components as they occur over time on the timeline. This set of 
failure times is a new path for the O&M cost. The set of 
probabilities have the same sequence as the set of failure times.                 

B. Reliability Sampling for Identical Timeline Conditions 

In order to create the identical timeline conditions, the same 
set of numbers has to be used. But the question remains, which 
set and how. When components have a new reliability 
distribution after the implementation of the new technology, the 
same failure times cannot be used for the two cases, hence using 
the identical set of failure times for the samples of the two cases 
becomes meaningless. However, it is still possible to use the 
identical ‘set of probabilities’. Figure A2 shows how the 
probabilities of two samples can remain the same while the 
value of samples change. The probability values represent the 
randomness and thus they have to stay identical for the two 
cases. For example, the microstructure of the blade material of 
a particular turbine and its properties are identical for the two 
cases although the loading changes when the technology is used 

 
Figure A1- Illustration of different number sets 
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thus the stresses and subsequent failure times will vary.  
A turbine consists of many components and the reliability of 

multiple components change when the technology is used. In 
this case, the probabilities (CDF values) remain the same for 
each component, e.g., for component one, failures 1 through 5 
have the same CDF values with tech and no-tech, but the value 
of the sample (which comes from the PDF) changes since the 
distribution has changed. In order to create identical timeline 
conditions, we use the same sequence of probabilities for the 
failures of ‘each component’, then generate their corresponding 
failure times and finally build the new timeline for the tech case 
based on the sequence of occurrence of the failures. The 
subsequent actions after the failure events are the maintenance 
events, which are dependent on the maintenance strategy. 
Taking this approach will automatically guarantee that when 
the technology improves the reliability, the new failures times 
are later than the failure times for the no-tech case.  
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