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Abstract - The business of supporting legacy electronic systems is challenging due to mismatches 

between the system support life and the procurement lives of the systems’ constitute components.  

Legacy electronic systems are threatened with DMSMS-type obsolescence (Diminishing 

Manufacturing Sources and Material Shortages) and the knowledge of their system support lives 

based upon existing replenishable and non-replenishable resources may be unknown.  This paper 

describes an End of Repair/End of Maintenance (EOR/EOM) model, which is a stochastic discrete-

event simulation that follows the life history of a population of parts and cards and determines how 

long the system can be sustained based upon existing inventories of spare parts and cards, and 

optionally harvesting of parts off of existing cards to increase system support length.  The model 

includes: part inventory segregation, part-specific degradation of inventories, user-defined inventory 

inspection periods, and operates from failure distributions that are either user-defined or synthesized 

from observed failures to date. 

 A case study using a real legacy system comprised of 117,000 instances of 70 unique cards and 

4.5 million unique parts is presented.  The case study was used to evaluate the system support life 

through a series of different scenarios: obsolete parts with no failure history never failing, obsolete 

parts with no failure history immediately incurring their first failures, and with and without part 

harvesting.  For this example case with existing inventories, the model indicates for the 'best-case' 

scenario that the legacy system can be supported for approximately 20 years prior to its first EOM 

event.  The immediate first failure assumption decreases the system support life by two years, while 

harvesting parts extends the system support life by two years.   

 

Index Terms - sustainment, COTS, legacy systems, demand forecasting, EOR, EOM, harvesting, 

DMSMS  

 

 

 
I.  INTRODUCTION 

 
The sustainment of electronic systems is a challenging task for system supporters.  This challenge 

varies from system-to-system and encompasses a large number of factors including the reliability of fielded 

components, required system availability and supply chain and inventory management, all while trying to 

minimize system life-cycle costs.  In an effort to lower system support and development costs, aerospace 

electronic systems designers shifted towards the use of commercial off-the-shelf (COTS) products as a 

substitute for "government unique" components.  The introduction of COTS components led to less 

expensive volume production, 'single source bound' avoidance and increased application flexibility, but 

brought about its own set of problems [1].   

The COTS components create difficulties for many applications--their component reliabilities may not 

meet the requirements of mission critical systems, required specific operating conditions, and they bound 
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users to volatile market trends where technology continuously evolves [2].  This rapid technological 

evolution periodically introduces "new and improved" components; however, the evolutionary road creates 

ripple effects that hinder electronic system supporters.  The emergence of electronic part obsolescence 

(DMSMS-type obsolescence) whereby a component is no longer procurable from its original manufacturer 

is a problem that plagues many aerospace system supporters.  The result of obsolescence inevitably leads to 

higher system life-cycle costs and becomes a major cost driver in systems that frequently experience long 

support lives (e.g., military and aerospace electronics systems).  The estimated costs for the U.S. Navy due 

to obsolescence are approximately $750 million annually [3].   

The obsolescence problem is typically associated with systems considered "sustainment-dominated"; 

i.e., systems whose long-term sustainment (life-cycle) costs exceed their original procurement costs [4].  

Examples of sustainment-dominated systems include avionics, naval systems, nuclear power plants, air 

traffic control systems, and medical equipment.  Sustainment-dominated systems are low-volume and have 

long field lives (often 20 years or more) that often require high availability.  Sustainment-dominated 

systems often become legacy systems because it becomes too expensive to replace them.  Long-term 

support of these legacy systems (rather than redesign or replacement) eliminates many potential risks and is 

often perceived to be less expensive.  The focus for system supporters becomes minimizing system life-

cycle cost while maximizing system support – this problem is typically resolved through a variety of 

reactive obsolescence mitigation approaches. 

Reactive approaches, although not a solution to the obsolescence problem, provide the supporter with 

ways to manage the problem tactically.  Reactive management approaches include alternate or substitute 

parts, aftermarket sources, lifetime buys, thermal uprating of parts, and emulated parts [5].  The strategies 

focused on in this paper are those that use existing stocks (often the result of part lifetime buys) of parts and 

reclamation to extend system support life based upon currently owned excess components and fielded 

legacy assemblies.   

The model proposed in this paper uses Monte Carlo sampling of part reliability distributions to forecast 

part demands.  These part reliability distributions can either be pre-defined or created on the basis of 

historical component failure data.  The model follows the life history of a population of parts and cards and 

determines how long the system can be sustained based upon existing inventories of spare parts and cards, 



Proceedings of the Aircraft Airworthiness & Sustainment Conference, Baltimore, MD, April 2012. 

and optionally harvesting of parts off of existing cards to increase system support life.  The end of system 

support life (i.e., End of Maintenance) is the earliest time that the inventories fail to support subsequent 

forecasted part demands.  Likewise, the End of Repair date is the last date that the last repair or 

manufacturing action associated with a part can be successfully performed.  The next section describes 

existing demand forecasting models, followed by sections that present the methodology of the End of 

Repair/End of Maintenance (EOR/EOM) model, a stochastic discrete-event simulation that forecasts 

system support life capabilities for legacy system supporters based on existing inventories of spares.  The 

model provides system supporters with probability distributions and associated confidence levels of system 

support life capabilities, identifies parts critical to the causation of system support loss, and calculates the 

rate of system support loss due to subsequent failures to meet forecasted demands. 

 

II.  DEMAND FORECASTING 
 

Demand forecasting is a crucial issue of inventory management and plays a significant role in 

electronic systems sustainment modeling.  The challenging task is developing a methodology that 

accurately forecasts part demands based on historical failure data.  Demand forecasting of parts to support a 

system is commonly performed using renewal functions [6,7].  Renewal functions predict the number of 

renewal (part failure) events in a specific period of time and are a common method used to determine 

warranty reserve funds.  However, renewal functions only calculate the expected number of events in a 

time period, not their respective dates.  Renewal functions and other basic sparing and warranty models are 

generally confined to calculating renewals for populations of parts represented by a single probability 

distribution.  In order to effectively address the EOM problem, one would have to evaluate each unique 

population of parts individually (assuming these populations of parts do not draw from the same 

inventories) and then determine the system support life by finding the earliest time one of the population 

sets could not be supported.   

Croston's method [8] is a common approach for intermittent demand forecasting involving exponential 

smoothing forecasts based on the size of a demand and time period between demands.  However, these 

methods only provide point forecasts and cannot produce forecast distributions and demand prediction 
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intervals.  The demand forecasting problem also requires that the model be able to incorporate random 

nature, associated with spare parts demand for mission critical systems. 

An alternative to these methods is the use of stochastic models to determine future parts demand.  A 

stochastic process allows for a multitude of probable and possible solutions based upon associated 

uncertainties, allowing for system complexities to be fully and accurately explored.  Stochastic models 

incorporate the inherent randomness associated with spare parts demands, meaning that demands for a part 

arise only when that part actually fails.  The derivation for stochastic analysis of demand forecasting for 

service parts [9] and approximate model closed-form solutions are proposed for constant part failure rates 

and constant part discard rates.  The proposed stochastic model developed in [9] determines part demands 

for given periods of time based on periodic product sales and failure information.  Eppen and Martin [10] 

investigate two cases considering stochastic demand size and lead times in a given period where the 

parameters of the distributions are known and unknown.   When the parameters are unknown, they use a 

simple exponential smoothing model to generate estimates of demand in each period.  Both of the presented 

simplistic stochastic models [9,10] only forecast part demands considering one part type during analysis.  

Real, systems contain hundreds of parts where each part could be characterized by a different probability 

distribution characterized by different distribution parameters.  The objective is not only to forecast 

multiple parts demands stochastically and simultaneously, but to track the system support life information 

(part failures, inventory depletion, and costs) over time as the forecasted part demands occur as 'events' that 

change the system.  The ability to forecast individual part demands is included in simplistic stochastic 

models, but the manner and organization of how this process is carried out is also of importance and it is 

not accommodated in the simple models.   

In this paper we develop a general solution based on discrete event simulation. We simulate an entire 

system support's lifetime through the stochastic process of forecasting several part demands (a timeline that 

progresses through part demands) simultaneously while retaining the ability to track at any instant during 

the simulation what particular event is taking place (what part fails and when the failure occurs). 
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III. END OF REPAIR/END OF MAINTENANCE (EOR/EOM) MODEL  
 
 

The discrete event simulator described in this paper models the process of inventory depletion through 

system operation for legacy systems and tracks the end of repair and end of maintenance dates for the 

system.  The electronic systems hierarchy assumed in the model includes parts and cards.  Parts are 

synonymous with components and cards are synonymous with assemblies or LRUs.  As previously 

mentioned, End of Repair (EOR) is defined as "the date that the last repair or manufacturing action 

associated with a part can be successfully performed."  EOR dates are part-specific and may also be card-

specific if the particular card can only draw from certain inventories.  Similarly End of Maintenance 

(EOM) is defined as "the earliest date that all available inventories fail to support the demand for one or 

more specific parts resulting in the loss of system operation."  EOM events are caused by a specific part on 

a specific card.   

 

Part Demand Sampling 

Only obsolete parts are considered in demand forecasting within the EOR/EOM model; all the non-

obsolete parts are assumed to be continuously procurable as needed.  The sampling of the part demands is 

performed using Monte Carlo, a sampling technique used for obtaining values from probability 

distributions involving inherent uncertainty.  The number of forecasted part demands is proportional to the 

total number of fielded part instances within the entire system because each part is considered unique 

within the model and tracked independently using discrete forecasted demands.  Sometimes organizations 

supporting legacy systems are uncertain of what reliability distributions or failure behavior the parts within 

their system exhibit, but they may have maintenance records for observed part failures.  The model can use 

this historical failure data (number of failures to date and the recorded calendar date of the first failure) to 

generate a probability distribution for the part.  The generated uniform distribution1 with lower bound a and 

upper bound b for a particular part with a failure history is given by, 

 pSFF ODDa )( −=   (1)  

                                                 
1 The methodology does not require the characterization of the failure histories for parts as uniform 
distributions where each value in the range is equally likely to occur.  A uniform distribution is only an 
example treatment that can be used if no other information is known. 
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where, 

=FFD  calendar year of the first failure 

=Ds calendar year the part was fielded 

=AD calendar year of the start of analysis 

pO = operational hours per year 

fN = number of failures to date 

tN = total number of fielded parts within entire system. 

 

The upper boundary of the distribution, b, is dependent upon the fraction of failures to date (between 

the date the part was fielded and the start of the analysis) divided by the total number of fielded parts.  

When the ratio,
T

f

N

N
 equals 1 (all failures observed prior to the start of the analysis), the upper bound 

becomes the difference between the start of analysis and the date the parts were fielded.  Likewise, as 
T

f

N

N
 

approaches 0 (no failures observed), the upper limit of the distribution approaches ∞.  When 

T

f

N

N
approaches ∞ (a large number of failures relative to the population of fielded parts), the upper limit of 

the distribution approaches a.   

The model can also account for parts that have no prior failure history.  Obsolete parts that exhibit no 

failure history are implicitly assumed to never fail during analysis (best-case).    The question then is: 

“What if the parts that have never failed before all of sudden start to fail?  How will this affect my system 

support life?”  The model also allows for a 'worst-case' scenario, where 'no-failure history' parts incur 

immediate first failures just prior to the start of analysis and their uniform distributions are then generated 

based upon the immediate failure in conjunction with additional historical data.   
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Discrete Event Modeling Process 

 The model described in this paper has the ability to track information regarding individual parts 

from introduction through failure, replacement and possibly subsequent failures and replacements through 

the system support life until end of maintenance occurs.  A process flow is depicted in Fig. 1.   

 

Fig. 1 EOR/EOM part failure process flow 
 

The model starts by sampling the dates of part demands for individual parts that are located on cards 

within the system.  After all of the demand dates are sampled within the system, the demands are sorted 

from earliest to latest on a part-by-part basis.2  The model then determines the earliest part demand that 

occurs in the system, progresses to its date, and performs a change to the system (this type of change is 

dependent on the type of event that occurs and available inventories).  After the change has been applied, 

the second earliest part demand is found, the model progresses to its date, and the process continues.  The 

model continues until a part demand cannot be fulfilled by existing inventories that previously sustained it 

(i.e., inventory stock-out).   

The simulation begins at the analysis date and the simulation time progresses until an End of 

Maintenance event occurs (where a part demand cannot be fulfilled by existing inventories that previously 

sustained it) --this constitutes a single simulated life history of the entire system.  In order to provide an 

                                                 
2 A part is classified as a component specific to a particular card and retains its own unique properties 
(probability distribution and quantity).  Each instance of a part on a card is treated individually (represented 
by its own forecasted part demand sampled from the part's probability distribution).   



Proceedings of the Aircraft Airworthiness & Sustainment Conference, Baltimore, MD, April 2012. 

accurate representation of the system support life considering part demand uncertainties, multiple  system 

life histories are tracked (typically 1,000) in order to produce probability distributions of  End of 

Maintenance dates and to identify the possible parts/cards (and their associated likelihoods) that cause 

system support loss. 

 

Determining EOR/EOM Information 

End of repair and end of maintenance events are recorded within every simulated life history of the 

system.  The information associated with each of these events is also recorded and analyzed at the end of 

the simulation.  The model has the ability to track multiple EOR/EOM events within a given system life 

history.  These are referred to as "ordered" events, whereby the first-ordered end of maintenance event is 

synonymous with the first end of maintenance event and so on.  The calculated EOR/EOM information that 

is analyzed is based on the order of occurrences. 

The ith-ordered mean End of Maintenance time (EOM events are organized by order of occurrence 

within a single life history) for a given part-card combination is given by, 

 ∑
=
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where, 

iM  = ith-ordered mean EOM time  

ijM = ith-ordered EOM time in the jth life history 

ijN  = number of occurrences as an ith-ordered EOM in the jth life history - either 1 (occurs) or 0 

(does not occur) 
k = number of life histories simulated. 
 

The corresponding probability for the given part-card combination causing the ith-ordered EOM is 

given by, 
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where, 

iP = ith-ordered EOM probability. 
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The mean End of Repair times for given part-card-last repair action combinations and their associated 

probabilities are analyzed in the same manner. 

The EOM event information can also be organized at the card-level (by card) rather than the system-

level (order of occurrence).  The associated means and probabilities are generated to provide probability 

distributions of end of maintenance dates on a card-basis rather than an ordering basis.  The card-level 

EOM information tracked was organized for first-ordered events associated with each card.  Therefore, the 

mean End of Maintenance time and corresponding probability for a given part-on-card combination 

concerning its first EOM event is given by eqns. (3) and (4) with i=1, respectively. 

The EOR/EOM calculated information is the same for card-level and system-level analysis, except that 

the organizational structures of both analyses are different.  The system-level analysis partitions events by 

order of their occurrences, while the card-level analysis partitions first ordered events by particular cards. 

 

Inventory of Spare Cards, Throwaway, and Part Harvesting 

The previously mentioned model draws from inventories as parts are needed, what happens when these 

inventories of spare parts are depleted?  The model also includes inventories of spare cards that can be 

accessed once these part inventories are depleted, potentially further extending the legacy system support 

life.  In the event that a part demand cannot be satisfied for a particular card that has available spare cards 

to draw from (see Fig. 2) the existing card is thrown away and replaced with one of the available spare 

cards.  The action of throwaway and replacement of the existing card means the existing card must be 

discarded and replaced – accounted by the removal and re-sampling of its part demands from their 

corresponding reliability distributions. 
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Fig. 2 Throwaway and part harvesting process 

 
 Another action that can be optionally taken is the harvesting or salvaging of parts off of discarded 

cards (the obsolescence mitigation strategy commonly known as reclamation).  The action of part 

harvesting removes parts that have not failed and places them in a separate inventory of harvested parts.  

When inventories of spare parts and spare cards are depleted, this third inventory is then accessed and used 

until there are no more replacements available – a process that extends the end of maintenance date (i.e., 

system support life) of the system.  The action of harvesting or reclamation will in general remove life from 

the part, a property that is also considered in the model and used in calculating the remaining fraction of 

useful life for the ith harvested part from the jth card, ijL , given by, 
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tFD
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−

−

=  (5) 

where, 

iH = preserved life fraction of ith part incurred from the physical action of harvesting (0-1)  

iFD = ith part forecasted demand date  

Ht = simulation time when harvesting action occurs 

=it simulation time when ith part was introduced into system 

 
The numerator in the fraction of eqn. (5) represents the remaining part life as the difference between 

the forecasted part’s demand date and the simulation time at the time harvesting occurs.  The denominator 

represents the part's time-to-failure when it is new.  The remaining part life must be preserved as a fraction 
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rather than a time-to-failure because it is likely the part will be used towards replacement on a different 

card where there may be discrepancies between the parts' reliabilities (represented by different probability 

distributions or distribution parameters.  The remaining life fraction is then used to adjust future forecasted 

part demands used during part replacements when all other existing inventories are depleted.  

The adjusted forecasted demand of the ith part from the mth card (m may equal j) , imAFD , is then 

given by, 

  imijim FDLAFD =  (6) 

where, 

=imFD  ith part forecasted demand date from the mth card 

 
Another possible issue associated with the storage of parts is degradation within inventories.  The 

implementation of part degradation as an event within the model is straightforward.  In discrete-event 

simulations, events can be described as anything that causes a change to the state of the system.  The model 

interprets inventory degradation as an event that can occur at any instance in time.  The model distinguishes 

between part failures and part degradation as two different types of events, but the model executes their 

processes in a similar manner.   

 

Fig. 3 Discrete-event simulation flow for multiple events 
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First, the model cycles through all possible types of events that can occur and finds the earliest date 

associated with each event type.  The model then finds the earliest date among all event types and 

progresses to the earliest date, implements the appropriate changes to the system (depending on event type), 

removes the earliest date and resamples the distribution corresponding to the part that caused the event, Fig. 

3.  The process continues until specific simulation requirements can no longer be met or until part demands 

fail to be supported based upon existing inventories.  Due to the nature of discrete-event simulation, the 

part inventory degradation event can be emulated through assignments of probability distributions 

representing the likelihood of a part degrading from inventory in a given time period.  The forecasted 

degradation date for the ith part from the jth inventory, ijFDD  is given by,  

  tDDFDD ijij +=  (7) 

where, 

=ijDD  ith part forecasted degradation demand date from the jth inventory 

=t  current simulation time (starting at t =0). 

The model currently treats inventory degradation as a recurring event that removes a part from 

inventory once the part's forecasted degradation demand date has been reached assuming there are 

remaining spares in inventory.  The part's degradation distribution is then resampled and the next forecasted 

degradation demand date is calculated and its process continues until either the inventory of spares runs out 

or the EOM date is reached.  This approach assumes that the degraded part is rightfully identifiable and 

discarded from inventory the moment it 'discretely' occurs; generally degraded parts remain in inventory 

until either inspection identifies the degraded part (which may require inspecting the entire lot) or the 

degraded part is identified after its failed use towards replacement.  The degradation process flow can be 

seen in Fig. 4. 
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Fig. 4 Part degradation process flow 
 

The process flow demonstrates the degradation for a single part within a single inventory.  In the event 

that additional parts are assigned degradation distributions, additional process flows are added in parallel 

concerning each part involved (each process flow concerns a single part located in a specific inventory).  

The EOR/EOM model allows for part degradation probability distributions to be included for each part 

appearing in specific part inventories within the system. 

 

IV. TEST CASE AND RESULTS 
 
 

In order to exercise the developed model, a test case were developed for a real legacy system.  The 

legacy system is comprised of unique cards, each card containing unique parts, and historical part failure 

histories.  The objective of the test case is twofold: 1) to demonstrate the capability of the model, and 2) to 

observe the legacy system sustainment ramifications through different test scenarios (part harvesting, 

immediate first failures) while generating part failure distributions from observed failure histories.   

The legacy system under investigation contains 117,000 instances of 70 different cards totaling 4.5 

million unique obsolete parts.  Each card has a unique number of fielded units and number of available 
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spare cards to draw from.  The provided legacy system was introduced in 1993 and the analysis begins on 

January 1, 2011.  The legacy system is tracked for 1,000 system life histories regarding each test case 

scenario in order to construct probability distributions of the EOM dates. 

The legacy system was examined using five different management assumptions representing 'worst-

case' and 'best-case' scenarios for the legacy system and incorporating the use of part harvesting towards 

system sustainment.  The 'best-case' scenario assumes that parts with no previous failure history within the 

system never fail and are not considered during EOR/EOM analysis.  This assumption may be valid 

depending on the nature of the system and when the legacy system was introduced.  The 'worst-case' 

scenario assumes that parts with no previous failure history experience their first failure at the beginning of 

the analysis and their failure distributions are synthesized based on this assumption.  Each test case was 

tracked for 1,000 system life histories to construct probability distributions of EOM dates.  The analysis 

ignored parts that were deemed non-obsolete and inventories of spare cards were included in all test cases 

and used before inventories of accumulated harvested parts were considered.  

 

Fig. 5 Legacy system test cases 

 
 

The first three test cases were analyzed to sustain the system until the first EOM date for the entire 

system (first instance that a part demand could not be fulfilled from available inventories) was reached.  

Test cases 4 and 5 sustain the system until one of two conditions was either met: 1) Run the simulation 

until every card type within the system has observed its first EOM date or 2) Run the simulation until the 

year 2050 has been reached.  In both test cases 4 and 5, the first condition was never met so the simulation 

ran to 2050 and recorded the EOM events until that time.  Test cases 4 and 5 were also ordered to organize 

EOM events and calculate associated means and probabilities on an card-level rather than system-level.  

This means that probability distributions of EOM dates were analyzed by individual cards rather than as a 

representation of the entire legacy system (by order of occurrence). 
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Parts Containing Significant Failure Histories with Right Censored Failure Data 

A large number of failures have been observed to date for several specific parts in the example system.  

For these parts, the time to failure distributions can be determined using Maximum Likelihood Estimation 

(MLE) to find the best fit to 2-parameter Weibull distributions while accounting for the surviving parts 

using life data analysis software (Weibull++®).3  The resulting failure distributions for these parts are 

shown in Fig. 6 and Fig. 7.  The two lines on each graph represent the fitted failure distributions with and 

without the right-censored data.   

 

Fig. 6 Part number 3798-05 failure distribution.  Both data sets are equal, one shows 10% unreliable, the 
other 100% unreliable (censored vs. uncensored).   

                                                 
3 The failure data is right censored because not all the fielded parts have failed to date.  Right censoring 
occurs in reliability testing when some of the units in the population survive a test time period without 
failing. 
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Fig. 7 Part number 5004-02 failure distribution.  Both data sets are equal, one shows 10% unreliable, the 
other 100% unreliable (censored vs. uncensored).   

 
 

Other obsolete parts included in the legacy system had too few recorded failures to make MLE fitting 

practical and their failure distributions were therefore treated as uniform distributions created from 

historical failure data as described in eqns. (1) and (2).     

 

No Failure of Non-Failed Parts and No Harvesting (Test Case 1) Results 

The results for the first test case can be seen in Fig. 8.  The mean time to the first EOM date for the 

system was approximately 20 years (2031).  The left figure shows a distribution of the first EOM dates for 

the legacy system.  On the basis of running 1,000 system life histories, that the following statement 

conclusions can be drawn: 

• 50% probability that at least one instance of the system will be unsupportable by 2032 

• ~100% (95.4%) probability of all instances of the system being supportable to 2028 

• 100% probability that at least one instance of the system will be unsupportable by 2033 
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The right side of Fig. 8 shows the tabulated results of the six most probable causes of EOR/EOM 

events.  The part that is most likely to result in the first-ordered EOM is part 5004-02 from Card 16 

(35.7%) with a mean EOM time of 21.3 calendar years.  This probability demonstrates that 357 out of 1000 

life histories, the 5004-02 parts from Card 16 caused the first EOM in the system. 

 

Fig. 8 System-level EOM distribution (left), EOM (top right) and EOR (bottom right) results for Case 1  

 
 
Immediate First Failure of Non-Failed Parts and No Harvesting (Test Case 2) Results 

The results for the second test case can be seen in Fig. 9.  The mean time to the first EOM date for the 

system was approximately 18 years (2029).  The left figure shows a distribution of the first EOM dates for 

the legacy system.  The right side of Fig. 9 shows the tabulated results of the six most probable causes of 

EOR/EOM events in the system.   
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Fig. 9 System-level EOM distribution (left), EOM (top right) and EOR (bottom right) results for Case 2 

 
 

The first End of Maintenance date decreases by two years due to the ‘worst-case’ assumption for 

obsolete parts with no failure histories.  The differences between cases 1 and 2 show that there are different 

parts on different cards that cause the EOM date to be reached.  The new parts identified in the case 2 

results are due to including the first failure assumption as many legacy system supporters may not have a 

significant number of spare parts for parts that have never experienced failures before.  Some of the same 

parts are identified in both sets of results—these parts also exhibit a decrease in their mean EOM arrival 

date due to additional card replacements that must be used to sustain the first failure parts. 

 

No Failure of Non-Failed Parts and Harvesting (Test Case 3) Results 

The results for the third test case can be seen in Fig. 10.  The mean time to the first EOM date for the 

system was approximately 20 years (2031)—resulting in a two year gain in system sustainment due to the 

action of harvesting of parts. 
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Fig. 10 System-level EOM distribution (left), EOM (top right) and EOR (bottom right) results for Case 3 

 
 
There are new introduced parts that cause the first EOM event.  The part that causes the first EOM 

event occurs on three separate cards and accounts for causing the first EOM 92% of the time.  This single 

part statistic demonstrates the action of part harvesting and how different cards are able to access the same 

harvested part for different cards (part’s failure distribution is adjusted depending on the card that it is 

replaced) to further extend system support life.  The first failure parts that had appeared in case 2 are no 

longer the root cause of the first EOM event due to the ability to harvest these first failure parts for later 

use. 

 
Immediate First Failure of Non-Failed Parts and No Harvesting (Test Case 4) Results 

The fourth test case initiates the change in analyses.  The analysis ran until the year 2050, tracking all 

EOM events observed.  The EOR/EOM model also can track specific cards through the system’s support 

life showing how the fielded number of cards is removed over time due EOM events.   Each of the tracked 

cards shown in Fig. 11 become unsupportable (all fielded cards are removed due to the failure of meeting 

part demands) by specific calendar dates.  The card-level EOM results for the fourth test case can be seen 

in Fig. 12.   
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Fig. 11 Card-level support tracking and loss 

 
The left figures in Fig. 12 show the card-level EOM probability distributions for specific cards in the 

legacy system.  The table on the right side of Fig. 12 shows a list of the cards within the legacy system that 

observed at least one EOM event up until the calendar date (2050) when the simulation was terminated for 

a number of simulated life histories.  22 of the 70 cards in the legacy system exhibited first EOM dates 

prior to 2050 and probability distributions for each card that experienced EOM can be provided. 
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Fig. 12 Card-level EOM distributions (left) and EOR/EOM results for Case 4 (right) 

 

 
 
No Failure of Non-Failed Parts and Harvesting (Test Case 5) Results 

The results for the last test case can be seen in Fig. 13, the only difference between cases 4 and 5 being 

the inclusion of part harvesting.  The case 5 results were similar with case 4 where 22 of the 70 cards in the 

legacy system exhibited first EOM dates prior to 2050. 

The common result is that part harvesting allows for card-level EOM dates to be delayed for 

significant periods of time.  This result may not always be the case and depends on many different factors 

including parts’ failure distributions and whether critical parts that cause card-level EOM events appear on 

multiple cards within the legacy system.  In addition, the action of harvesting parts may not significantly 

delay card-level EOM dates when faced with high failure parts (due to excessive number of demands at a 

given time and lack of supply).   
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Fig. 13 Card-level EOM distributions (left) and EOR/EOM results for Case 5 (right) 

 
 
IV. DISCUSSION AND CONCLUSIONS 
 

The business of supporting legacy electronics systems is challenging due to mismatches between the 

system support life and the procurement lives of the systems’ constitute components.  In this paper we 

describe an End of Repair/End of Maintenance (EOR/EOM) model, which is a stochastic discrete-event 

simulation that follows the life history of a population of parts and cards and determines how long the 

system can be sustained based upon existing inventories of spare parts and cards, and optionally harvesting 

of parts off of existing cards to increase system support length.  

The investigated legacy system under the 'best-case' scenario was able to remain supported on average 

until the calendar year of 2031.  The introduced worst-case scenario assumption (immediate first failures) 

led to a decrease in system support life by two years.  The implemented action of part harvesting 
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(reclamation) extended the system support life by two years, allowing other cards to access commonly-used 

parts towards replacement actions.  In test cases 4 and 5, some cards that became fully unsupportable by the 

year 2050 did so after approximately six years after the appearance of their first observed EOM event.  The 

ability to track multiple EOM events provides the supporter with foreknowledge into what parts and/or 

cards will begin to 'drop-off-the-map' within the legacy system.   

The EOR/EOM simulator model provides the legacy system supporter with insight about how long the 

system can be supported based on existing inventories of spare parts and cards including the critical 

identification of parts/cards (and their associated likelihoods) that cause system support loss.  The model 

has the ability to generate part reliability distributions based on historical failure data (failures to date, first 

failure date, and number of fielded parts) for components having uncertain or unknown reliability 

information.  The resulting forecasted system support life and its associated levels of uncertainty allow 

system supporters to make appropriate decisions (will further mitigation strategies need to be exercised or 

not) concerning system sustainment.   
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