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Abstract:  Many technologies have life cycles that are 
shorter than the life cycle of the product they are in.  
Life cycle mismatches caused by the obsolescence of 
technology (and particularly the obsolescence of 
electronic parts) results in high sustainment costs for 
long field life systems, e.g., avionics and military 
systems.  This paper describes a new methodology for 
forecasting electronic part obsolescence using a 
combination of life cycle curve forecasting and the 
determination of electronic part vendor-specific 
windows of obsolescence using data mining of 
historical last-order or last-ship dates.  The new 
methodology not only enables more accurate 
obsolescence forecasts but can also generate forecasts 
for user-specified confidence levels.  The methodology 
has been demonstrated on both individual parts and 
modules, and used to enable design refresh planning of 
systems and within the formation of material risk 
indices associated with the computation of sustainment 
dollars at risk. 

 
1. Introduction:  A significant problem facing many 
“high-tech” sustainment-dominated1 systems is 
technology obsolescence, and no technology typifies the 
problem more than electronic part obsolescence, where 
electronic parts refers to integrated circuits and discrete 
passive components, [2,3].  The defense industry refers 
to electronic part obsolescence (and more generally 
technology obsolescence) as DMSMS – Diminishing 
                                                 
1This usage of the term “sustainment” in this paper does not 
infer environmental impacts, but is consistent with the 
Brundtland Report definition [1]: “Development that meets the 
needs of present generations without compromising the ability 
of future generations to meet their own needs”.  In the context 
considered in this paper, “present and future generations” 
refers to the users and maintainers of a system. 
 

Manufacturing Sources and Materials Shortages, [4].  In 
the past several decades, electronic technology has 
advanced rapidly causing electronic components to have 
a shortened procurement life span.  Industry experts 
estimated that over 200,000 electronic components from 
over 100 manufacturers had become obsolete by the end 
2003, [5].  Driven by the consumer electronics product 
sector, newer and better electronic components are 
being introduced frequently, rendering older 
components obsolete.  Yet, sustainment-dominated 
systems such as aircraft avionics are often produced for 
many years and maintained for decades.  Sustainment-
dominated products particularly suffer the consequences 
of electronic part obsolescence because they have no 
control over their electronic part supply chain due to 
their low production volumes. This problem is 
especially prevalent in avionics and military systems, 
where systems often encounter obsolescence problems 
before they are fielded and always during their support 
life. 

 
Part obsolescence dates (the date on which the part is no 
longer procurable from its original source) are important 
inputs during life cycle planning for long-field life, 
sustaintment-dominated products. Most electronic part 
obsolescence forecasting is based on the development of 
models for the part’s life cycle.  Traditional methods of 
life cycle forecasting utilized in commercially available 
tools and services are ordinal scale based approaches, in 
which the life cycle stage of the part is determined from 
an array of technological attributes, e.g., [6,7] and 
available in commercial tools such as TACTRACTM, 
Total Parts Plus, and Q-StarTM.  More general models 
based on technology trends have also appeared 
including a methodology based on forecasting part sales 
curves [8], and leading-indicator approaches [9].  Note, 
obsolescence forecasting is an “outside looking in” form 
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of product deletion modeling, e.g., [10], performed 
without access to internal knowledge of the 
manufacturer of the part. 
 
Existing commercial forecasting tools are good at 
articulating the current state of a part’s availability and 
identifying alternatives, but limited in their capability to 
forecast future obsolescence dates and do not generally 
provide quantitative confidence limits when predicting 
future obsolescence dates or risks.  While a range of 
electronic part obsolescence mitigation approaches exist 
(see [3]), they are primarily reactive in nature (applied 
after obsolescence occurs).  Strategic obsolescence 
management requires more accurate forecasts, or at least 
forecasts with a quantifiable accuracy.  Better forecasts 
would open the door to the use of life cycle planning 
tools that could lead to more significant sustainment 
cost avoidance, [11]. 
 
This paper describes a new electronic part obsolescence 
forecasting methodology that is a combination of life 
cycle curve forecasting and the determination of 
electronic part vendor-specific windows of 
obsolescence using data mining of historical last-order 
or last-ship dates.  The new methodology not only 
enables more accurate obsolescence forecasts but can 
also generate forecasts for user-specified confidence 
levels.  The methodology has been demonstrated on 
both individual parts and modules.  The paper also 
briefly describes the use of the obsolescence forecasts 
within a design refresh planning environment. 
 
While successful electronic part obsolescence 
forecasting involves more than just predicting part-
specific last order dates, being able to predict original 
vendor last order dates more accurately using a 

combination of market trending and data mining is an 
important component of an overall obsolescence risk 
forecasting strategy. 
  
2. Obsolescence Forecasting Approach:  The 
obsolescence forecasting approach discussed in this 
paper is an extension of a previously published life 
cycle curve forecasting methodology based on curve 
fitting sales data for an electronic part [8].  In the 
existing methodology, attributes of the curve fits (e.g., 
mean and standard deviation for sales data fitted with a 
Gaussian) are plotted and trend equations are created 
that can be used for predicting the life cycle curve of 
future versions of the part type (see Section 2.1 for an 
example).  Similar procedures could be used to forecast 
the life cycle trends of secondary attributes such as bias 
level or package type.  This obsolescence forecasting 
approach used a fixed “window of obsolescence” 
determined as a fixed number of standard deviations 
from the peak sales year of the part.  This method was 
evaluated along with several other approaches by 
Northrop Grumman (in the Air Force CPOM program) 
and shown to be about the same accuracy as the 
commercial ordinal scale forecasting approaches.   

 
2.1 Example Life Cycle Curve Forecasting 
Algorithm – Flash Memory:  This subsection provides 
an example for life cycle curve forecasting for flash 
memory using the methodology in [8].  Figure 1 shows 
the historical and forecasted sales data for monolithic 
flash memory (from [12] and supplemented with more 
recent market numbers).  The values of µp and σp that 
resulted from the best Gaussian fits to the data sets in 
Figure 1 were plotted; the trends for µp and σp are 
shown in Figures 2 and 3.  For flash memory the trend 
in peak sales year and standard deviation in number of 
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Figure 1:  Historical and forecasted sales data for monolithic flash memory. 
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units shipped is given by, 
 

1997.2)1.5663ln(Mµ p +=  (1) 

2.2479M)-0.0281ln(σp +=  (2) 
where M is the size of the flash memory chip in Megs.   
 
The resulting trend equations can be used reproduce the 
life cycle curve for the parts that were used to create the 
relationships and for parts that are beyond the original 

dataset.  For example, for M = 1 Meg, the trend 
equations gives µp = 1997.2 and σp = 2.25 (you can 
compare these to the actual data in Figure 1).  Similarly, 
plugging in M = 512 Meg into (1) and (2) gives µp = 
2007 and σp = 2.07 (this is a monolithic flash memory 
chip that was not included in the original dataset).  
 
When generating the life cycle curve trend equations 
one should be careful not to mix mil-spec parts and 
commercial parts.  For example, (1) and (2) were 
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Figure 2:  Trend equation for peak sales year (µp), for flash memory. 
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Figure 3:  Trend equation for standard deviation (σp), for flash memory. 
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generated for commercial flash memory chips and 
should only be applied to commercial flash memory 
chips.  Mil-spec flash memory chips (if they existed) 
would be considered a completely different part and 
unique trend equations would need to be developed for 
them. 
 
2.2 Determining the Window of Obsolescence via 
Data Mining:  The methodology described above 
provides a way to create or re-create the life cycle curve 
for a part type given its primary attribute.  Where 
primary attributes are attributes that can be identified 
with the evolution of the part over time.  In the original 
baseline methodology, [8], the “window of 
obsolescence” specification was defined to be at 2.5σp 
to 3.5σp after the peak sales date (µp).  In reality, the 
window of obsolescence specification is not a constant 
but depends on numerous factors. 

 
We suggest that the window of obsolescence 
specification is dependent on manufacturer-specific and 
part-specific business practices.  For a particular part 
type (e.g., flash memory), historical last order date data 
is collected and sorted by manufacturer.2  Each part 
instance (data entry) in the resulting sorted data has a 
specific value of primary attribute (e.g., 32M) for which 
the peak sales date (µp) and standard deviation (σp) can 
be computed using the previously created trend 
equations (for flash memory these are given in (1) and 
(2)).  The last order date for the part instance is then 
normalized relative to the peak sales year.  The 
normalization is performed for every part instance for 
the selected part type and manufacturer. 

 
Next a histogram of the normalized vendor-specific last 
order dates is plotted; the histogram represents a 
probability distribution of when (relative to the peak 
sales year) the specific manufacturer obsoletes the part 
type.  As an example, Figure 4 shows the histogram for 

                                                 
2 The last order date is the last date that a manufacturer will 
accept an order for the part.  After the last order date has 
passed, the part is considered to be obsolete.  Obsolescence of 
a part does not necessarily correlate to the part’s availability, 
i.e., some parts remain available through aftermarket sources 
and brokers for considerable periods of time after the original 
manufacturer has obsoleted them. 

Atmel (ATM) flash memory (based on 57 last order 
dates mined from PartMiner CAPS Expert).  In order to 
quantify the manufacturer-specific obsolescence 
probability, the histogram is fit with a Gaussian form 
and the parameters of the fit are extracted, i.e., µlo and 
σlo.  The window of obsolescence specification is then 
given by,  
 

( ) pσxσµµ windowceObsolescen lolop ±+=  (3) 
 
where x depends on the confidence level desired (x = 1 
you have a 68% confidence that you have the range that 
accurately predicts the obsolescence event, similarly, x 
= 2 represents 95% confidence).   

 
By combining the life cycle curve trends and the ATM-
specific obsolescence window, the resulting 
obsolescence dates for ATM flash memory are given by 
(4), which is a function of the size in Megs (M) and 
confidence level desired.  Equation (4) assumes that the 
uncertainty in the window of obsolescence dominates 
the model uncertainty associated with the trend 
equations.   

 
Using the methodology for the entire set of flash 
memory provided by PartMiner (262 data points), yields 
the results shown in Figure 5.  The diagonal line in the 
plot shows exact agreement between prediction and 
actual.  The error bars represent a 68% confidence level.  
The accuracy with which the improved algorithm 

0

5

10

15

20

25

30

35

-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 More

Number of standard deviations past the peak

N
um

be
r

ATM (57 points)
Mean 0.88 (0.88)
Stddev 0.72 (0.72)

Figure 4:  Atmel (ATM) flash memory last order 
dates. 

 

Obsolescence date = 1.5663ln(M)+1997.2 + [0.88 ± 0.72x](-0.0281ln(M)+2.2479)

Peak sales date Standard deviation 
in sales data

Number of standard deviations past 
the peak for ATM Flash

              
 
 

                              (4) 



Proceedings of 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference, St. Louis, Missouri Grant 0438522 & 0532643 

forecasts the obsolescence of parts is a substantial 
improvement over the original algorithm. 
 
2.3 Application of Data Mining Determined 
Windows of Obsolescence to Memory Modules:  As a 
further demonstration of the methodology described in 
this paper, consider its application to memory modules 
that are made up of multiple chips.  The obsolescence of 

memory modules is not generally dictated by the 
obsolescence of the memory chips that are embedded 
within them.  Rather, the obsolescence of memory 
modules is related to the beginning of availability of 
monolithic replacements for identical amounts of 
memory.  As an example, in Figure 6, the 16M DRAM 
module became obsolete when monolithic 16M DRAM 
chips became available. 
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Figure 5:  Forecasting results for monolithic flash memory chips. 262 flash memory chips plotted.  Fixed 
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Figure 6:  Obsolescence characteristics of DRAM memory modules vs. monolithic DRAM. 
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In the case of DRAM memory modules, the last order 
date data is collected.  Each module instance (data 
entry) has a specific value of primary attribute (e.g., 
16M).  For each module instance, the peak sales date 
(µp) and standard deviation (σp) are computed for the 
monolithic equivalent.  The last order date for the 
module instance is then mapped (normalized) to the 
standard deviations before the peak sales date for the 
monolithic equivalent.  In the case of memory modules, 
there was no need to sort the data by vendor – all the 
vendors considered appear to be obsoleting memory 
modules based on the same driver.  Figure 7 shows a 
curve fit of the resulting data mined last order dates 
mapped to the life cycle curve of the monolithic 
equivalents. 

 
Armed with the relation shown in Figure 7 and the life 
cycle curve trends for DRAMs (e.g., see [8]), 
obsolescence dates for DRAM memory modules are 
given by (5).  
In (5), x = log(M) ± α, where the value of α depends on 
what confidence level you want (i.e., α =0 gives you the 
curve fit on the previous slide, α = 0.3 gives ~90% 
confidence level). 

3. The Use of Electronic Part Obsolescence Forecasts 
in Design Refresh Planning:  Because of the long 
manufacturing and field lives associated with 
sustainment-dominated systems, they are usually 
refreshed or redesigned one or more times during their 
lives to update functionality and manage obsolescence.  
Unlike high-volume commercial products in which 
redesign is driven by improvements in manufacturing, 
equipment or technology; for sustainment-dominated 
systems, design refresh is often driven by technology 
obsolescence that would otherwise render the product 
un-producible and/or un-sustainable. 
Ideally, a methodology that determines the best dates 
for design refreshes, and the optimum mixture of 
actions to take at those design refreshes is needed.  The 
goal of refresh planning is to determine: 
 
• When to design refresh 
• What obsolete system components should be 

replaced at a specific design refresh (versus 
continuing with some other obsolescence 
mitigation strategy) 

• What non-obsolete system components should 
be replaced at a specific design refresh. 

 
 
 
 
 
Obsolescence date 

 

= 1991.8M0.0011 - [0.9023x3 -4.7047x2+13.167x-11.935](3.1M-0.23)

Peak sales date of 
monolithic DRAM

Standard deviation 
in sales data for the 

Number of standard deviations before the peak 
of an equivalent monolithic DRAM

    
 
 
   

(5) 

y = 0.9023x3 - 4.7047x2 + 13.167x - 11.935

-5

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

log(size M)

N
um

be
r o

f s
ta

nd
ar

d 
de

vi
at

io
ns

 b
ef

or
e 

th
e 

pe
ak

IBM
OKLJ
SIEG

Poly. ( )

 
 

Figure 7:  Data mined data mapping for DRAM memory modules.  
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Design refresh planning as it applies to obsolescence 
sensitive systems is discussed in more detail in [13].   

 
For refresh planning, the obsolescence date forecasts for 
electronic parts are used as an input to a design refresh 
planning tool called MOCA (Mitigation of 
Obsolescence Cost Analysis).  MOCA determines the 
part obsolescence impact on life cycle sustainment costs 
for long field life electronic systems based on future 
production projections, maintenance requirements and 
part obsolescence forecasts. Based on a detailed cost 
analysis model, the methodology determines the 
optimum design refresh plan during the life of the 
product (from design through operation and support). 
The design refresh plan consists of the number of design 
refresh activities, their respective calendar dates and 
content necessary to minimize the life cycle sustainment 
cost of the product. The methodology supports user 
determined short- and long-term obsolescence 
mitigation approaches on a per part basis, variable look-
ahead times associated with design refreshes.  MOCA is 
a stochastic tool in which all inputs can be probability 
distributions enabling MOCA to perform a robust 
optimization of refresh plan timing and content – this is 
an extremely important attribute given that the problem 
being addressed is fraught with uncertain and sparse 
data.  For more detail on the MOCA tool, see [13]. 

 
An example refresh planning result generated by 
MOCA using a combination of obsolescence forecasts 
from commercial forecasting tools and from algorithms 
developed using the methodologies described in this 
paper is shown in Figure 8.  MOCA generates results 
for all possible combinations of design refresh locations 
(dates) up to a user specified maximum number of 
design refreshes during the life of the product (3 
refreshes, 20 year life in Figure 8 for example).  The 
data points on the plot in Figure 8 each represent a 
different refresh plan (a refresh plan is a group of one or 
more design refreshed on specific dates during the 
lifetime of the unit).  The “Mean Design Refresh Date” 
is the average date of the refresh in the plan (it is not 
important to the solution, i.e., it is just a way of 
spreading the results out along the horizontal axis for 
viewing). If the refresh plan only contains a single 
refresh, then the mean design refresh date is the actual 
date that the refresh takes place.  The cost axis is a cost 
metric that is proportional to the life cycle cost of 
manufacturing and sustainment of all the units (design 
refresh and any associated re-qualification are included, 
but initial design and the original qualification cost is 
not included).  This cost does not necessarily 
correspond to total life cycle costs for the system, but a 
smaller value of the metric does indicate lower life 
cycle cost.  Note; 2005 was the date that the first 

production lot completed.  However, this does not 
preclude in any way, parts used in the system becoming 
obsolete prior to 2005; in fact, some parts were 
forecasted to be obsolete prior to the completion of the 
first lot.   
 
4. The Use of Electronic Part Obsolescence Forecasts 
to Enable Material Risk Index Formation:  A 
Material Risk Index (MRI) approach analyzes a 
product’s bill of materials and scores a supplier-specific 
part within the context of the enterprise using the part, 
e.g., [14].  MRIs are used to combine the risk prediction 
from obsolescence forecasting with organization-
specific usage and supply chain knowledge in order to 
estimate the magnitude of sustainment dollars put at risk 
within a customer’s organization by a part’s 
obsolescence.  MRIs work by cataloging replaceable 
subsystems by functionality (e.g., memory board, 
processor board, etc.), each cataloged subsystem is 
characterized by a profile that includes a set of time-
dependent obsolescence risk impacts and an action level 
that defines the activities associated with design 
refreshment in the time period.  The obsolescence risk 
in a particular period is translated into the fraction of 
subsystems of a certain type that require refreshment in 
the period.  The cost of refreshment in the period is 
computed with an activity-based cost model.  Summing 

 
Figure 8:  Example design refresh planning result 

from MOCA.  The solution with no refreshes 
(upper left) and the optimum refresh plan (lower 

right) are circled. 
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all the refresh costs over all the subsystems provides an 
estimate of the sustainment cost in the period. 
 
An activity-based cost ontology, which plays a key role 
in the formalization of cost information by capturing 
fundamental concepts in the product cost domain has 
been built that can be used in MRI calculation (see 
Figure 9), [15] and [16].  This cost ontology is used as a 
product cost knowledge base in a cost management 
system that is web-based for distributed access and 
collaboration and facilitates sharing of the common 
understanding of the role of costs among different types 
of engineers during design. 

 
The forecasting algorithms discussed in this paper can 
be combined with the activity-based cost modeling to 
form an MRI calculation system for the assessment of 
application-specific obsolescence impact. 
 
5. Discussion:  Successful use of existing commercial 
electronic part obsolescence forecasting relies on the 
assumption that the forecasting is updated often and that 
the forecasts become better (more accurate) the closer 
you get to the actual obsolescence date.  This implies 
that real forecasting value depends on an organization’s 
ability to institute a continuous monitoring strategy and 
its ability to act quickly if a part accelerates toward 
obsolescence.3  Unfortunately, the closer to the actual 
obsolescence event you get before the forecast 
converges, the less useful the forecast is, and thereby 
the value of pro-active refresh planning is limited.  
Being able to estimate the obsolescence date years in 

                                                 
3 This implies that organizations should very carefully 
consider the update frequency of the electronic part 
availability risk forecasting data before subscribing to a 
particular tool or service if they expect to make practical use 
of the forecasts provided. 
 

advance obviously provides many more options than 
knowing it 1 month in advance. 
 
The methodology presented in this paper is a move in 
the direction of providing more accurate obsolescence 
forecasting with quantifiable confidence limits.  
However, the work presented in this paper does not 
represent a standalone solution.  This approach needs to 
be combined with subjective information included in 
traditional obsolescence forecasting tools, e.g., number 
of sources, market share, technology factors, etc. 

 
It is also worth pointing out that the two forecasting 
examples presented in this paper are straightforward 
applications of the methodology (they are “easy” cases).  
Not all part types have easily identifiable primary 
attributes (attributes that can be identified with the 
evolution of the part over time), therefore, we do not 
claim that the methodology will be useful on every part 
type. 
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